Hierarchical genetic fuzzy systems

Abstract This paper introduces a hierarchical evolutionary approach to optimize the parameters of Takagi–Sugeno (TS) fuzzy systems. The approach includes a least-squares method to determine the parameters of nonlinear consequents. A pruning procedure is developed to avoid redundancy in each rule consequent and to achieve proper representation flexibility. The performance of the hierarchical evolutionary approach is evaluated using function approximation and classification problems. They demonstrate that the evolutionary algorithm, working together with optimization and pruning procedures, provides structurally simple fuzzy systems whose performance seems to be better than the ones produced by alternative approaches.

[1]  Patrick K. Simpson,et al.  Fuzzy min-max neural networks. I. Classification , 1992, IEEE Trans. Neural Networks.

[2]  Francisco Herrera,et al.  A Two-stage Evolutionary Process for Designing Tsk Fuzzy Rule-based Systems a Two-stage Evolutionary Process for Designing Tsk Fuzzy Rule-based Systems , 1996 .

[3]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[4]  M.A. Lee,et al.  Integrating design stage of fuzzy systems using genetic algorithms , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[5]  H. Ishibuchi,et al.  Genetic-algorithm-based approach to linguistic approximation of nonlinear functions with many input variables , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[6]  Henning Heider,et al.  A cascaded genetic algorithm for improving fuzzy-system design , 1997, Int. J. Approx. Reason..

[7]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[8]  W. Pedrycz,et al.  An introduction to fuzzy sets : analysis and design , 1998 .

[9]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[10]  Giovanna Castellano,et al.  A staged approach for generation and compression of fuzzy classification rules , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[11]  Patrick Siarry,et al.  A genetic algorithm for optimizing Takagi-Sugeno fuzzy rule bases , 1998, Fuzzy Sets Syst..

[12]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[13]  Kenneth A. De Jong,et al.  Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents , 2000, Evolutionary Computation.

[14]  Umesh V. Vazirani,et al.  An Introduction to Computational Learning Theory , 1994 .

[15]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[16]  A. Rizzi,et al.  Automatic training of ANFIS networks , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[17]  W. Härdle Applied Nonparametric Regression , 1991 .

[18]  Mu-Song Chen,et al.  An efficient learning method of fuzzy inference system , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[19]  Richard S. Johannes,et al.  Using the ADAP Learning Algorithm to Forecast the Onset of Diabetes Mellitus , 1988 .

[20]  Russell C. Eberhart,et al.  Implementation of evolutionary fuzzy systems , 1999, IEEE Trans. Fuzzy Syst..

[21]  M. Sugeno,et al.  Derivation of Fuzzy Control Rules from Human Operator's Control Actions , 1983 .