Prediction of solubility of ammonia in liquid electrolytes using Least Square Support Vector Machines

[1]  Yuhai Wu,et al.  Statistical Learning Theory , 2021, Technometrics.

[2]  Alireza Bahadori,et al.  Vapor liquid equilibrium prediction of carbon dioxide and hydrocarbon systems using LSSVM algorithm , 2015 .

[3]  D. Larcher,et al.  Enzymatic saccharification and structural properties of industrial wood sawdust: Recycled ionic liquids pretreatments , 2014 .

[4]  Qiqi Tian,et al.  Thermodynamic analysis of a novel air-cooled non-adiabatic absorption refrigeration cycle driven by low grade energy , 2014 .

[5]  J. C. Bruno,et al.  Performance analysis of absorption heat transformer cycles using ionic liquids based on imidazolium cation as absorbents with 2,2,2-trifluoroethanol as refrigerant , 2014 .

[6]  Mohammad Yusri Hassan,et al.  A review on applications of ANN and SVM for building electrical energy consumption forecasting , 2014 .

[7]  F. Gharagheizi,et al.  Determination of the speed of sound in ionic liquids using a least squares support vector machine group contribution method , 2014 .

[8]  Betul Bektas Ekici,et al.  A least squares support vector machine model for prediction of the next day solar insolation for effective use of PV systems , 2014 .

[9]  Jacek M. Zurada,et al.  Review and performance comparison of SVM- and ELM-based classifiers , 2014, Neurocomputing.

[10]  T. K. Gogoi,et al.  Thermodynamic analysis of a combined reheat regenerative thermal power plant and water–LiBr vapor absorption refrigeration system , 2014 .

[11]  D. Tang,et al.  Investigation on vapor-liquid equilibria for binary systems of metal ion-containing ionic liquid [bmim]Zn2Cl5/NH3 by experiment and modified UNIFAC model , 2013 .

[12]  P. Kohl,et al.  Theoretical and Experimental Investigation of an Absorption Refrigeration System Using R134/[bmim][PF6] Working Fluid , 2013 .

[13]  P. Kohl,et al.  Performance Simulation of Ionic Liquid and Hydrofluorocarbon Working Fluids for an Absorption Refrigeration System , 2013 .

[14]  Behzad Vaferi,et al.  Investigating vapor–liquid equilibria of binary mixtures containing supercritical or near-critical carbon dioxide and a cyclic compound using cascade neural network , 2013 .

[15]  Andrei G. Fedorov,et al.  Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid , 2012 .

[16]  R. Haghi Chemoinformatics : Advanced Control and Computational Techniques , 2012 .

[17]  Lin Fu,et al.  A review of working fluids of absorption cycles , 2012 .

[18]  C. Faúndez,et al.  Gas–liquid equilibrium modeling of mixtures containing supercritical carbon dioxide and an ionic liquid , 2012 .

[19]  Ali Eslamimanesh,et al.  Artificial Neural Network modeling of solubility of supercritical carbon dioxide in 24 commonly used ionic liquids , 2011 .

[20]  Zhiqiang Yu,et al.  Experimental investigation on an ammonia–water–lithium bromide absorption refrigeration system without solution pump , 2011 .

[21]  Thanarath Sriveerakul,et al.  Analysis of a combined Rankine–vapour–compression refrigeration cycle , 2010 .

[22]  S. Fallahi,et al.  Estimation of VLE of binary systems (tert-butanol + 2-ethyl-1-hexanol) and (n-butanol + 2-ethyl-1-hexanol) using GMDH-type neural network , 2010 .

[23]  Taghi Khayamian,et al.  Application of QSPR for prediction of percent conversion of esterification reactions in supercritical carbon dioxide using least squares support vector regression , 2010 .

[24]  Davide Anguita,et al.  Model selection for support vector machines: Advantages and disadvantages of the Machine Learning Theory , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[25]  J. Andreu,et al.  Modeling ionic liquids and the solubility of gases in them: Recent advances and perspectives , 2010 .

[26]  C. Faúndez,et al.  Phase equilibrium modeling in ethanol + congener mixtures using an artificial neural network , 2010 .

[27]  Mingjun Wang,et al.  Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil , 2009 .

[28]  Rabah Gomri,et al.  Second law comparison of single effect and double effect vapour absorption refrigeration systems , 2009 .

[29]  José O. Valderrama,et al.  Thermodynamic Consistency Test of Vapor−Liquid Equilibrium Data for Mixtures Containing Ionic Liquids , 2008 .

[30]  V. H. Alvarez,et al.  Parameter estimation for VLE calculation by global minimization: the genetic algorithm , 2008 .

[31]  A. Yokozeki,et al.  Vapor–liquid equilibria of ammonia + ionic liquid mixtures , 2007 .

[32]  Hajir Karimi,et al.  Correlation of Vapour Liquid Equilibria of Binary Mixtures Using Artificial Neural Networks , 2007 .

[33]  A. Yokozeki,et al.  Ammonia Solubilities in Room-Temperature Ionic Liquids , 2007 .

[34]  Dominique Richon,et al.  Measurement of physical properties of refrigerant mixtures. Determination of phase diagrams , 2006 .

[35]  A. Shariati,et al.  High-pressure phase behavior of systems with ionic liquids , 2004 .

[36]  Cor J. Peters,et al.  High-pressure phase behavior of systems with ionic liquids: II. The binary system carbon dioxide+1-ethyl-3-methylimidazolium hexafluorophosphate , 2004 .

[37]  Johan A. K. Suykens,et al.  Weighted least squares support vector machines: robustness and sparse approximation , 2002, Neurocomputing.

[38]  S. Chungpaibulpatana,et al.  A review of absorption refrigeration technologies , 2001 .

[39]  R. Radermacher,et al.  An experimental comparison of ammonia-water and ammonia-water lithium bromide mixtures in an absorption heat pump , 1985 .

[40]  Gang Wang,et al.  Efficient saccharification by pretreatment of bagasse pith with ionic liquid and acid solutions simultaneously. , 2015 .

[41]  D. Zheng,et al.  Vapor-Liquid Equilibrium Prediction of Ammonia-Ionic Liquid Working Pairs of Absorption Cycle Using UNIFAC Model , 2014 .

[42]  Farhad Gharagheizi,et al.  Development of a LSSVM-GC model for estimating the electrical conductivity of ionic liquids , 2014 .

[43]  Ugur Atikol,et al.  Overview of Ionic Liquids Used as Working Fluids in Absorption Cycles , 2013 .

[44]  Tian Haijun,et al.  Modeling of Power Plant Superheated Steam Temperature Based on Least Squares Support Vector Machines , 2012 .

[45]  Jiejin Cai,et al.  Predicting hourly cooling load in the building: A comparison of support vector machine and different artificial neural networks , 2009 .