Flexible Neural Hardware Supports Dynamic Computations in Retina

The ability of the retina to adapt to changes in mean light intensity and contrast is well known. Classically, however, adaptation is thought to affect gain but not to change the visual modality encoded by a given type of retinal neuron. Recent findings reveal unexpected dynamic properties in mouse retinal neurons that challenge this view. Specifically, certain cell types change the visual modality they encode with variations in ambient illumination or following repetitive visual stimulation. These discoveries demonstrate that computations performed by retinal circuits with defined architecture can change with visual input. Moreover, they pose a major challenge for central circuits that must decode properties of the dynamic visual signal from retinal outputs.

[1]  Chethan Pandarinath,et al.  Ganglion Cell Adaptability: Does the Coupling of Horizontal Cells Play a Role? , 2008, PloS one.

[2]  G WALD,et al.  The photoreceptor process in vision. , 1955, American journal of ophthalmology.

[3]  D. Baylor,et al.  An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[4]  E.J. Chichilnisky,et al.  Cone photoreceptor contributions to noise and correlations in the retinal output , 2011, Nature Neuroscience.

[5]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[6]  David J. Calkins,et al.  M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses , 1994, Nature.

[7]  R. W. Rodieck,et al.  Analysis of receptive fields of cat retinal ganglion cells. , 1965, Journal of neurophysiology.

[8]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[9]  Marla B. Feller,et al.  Organization and development of direction-selective circuits in the retina , 2011, Trends in Neurosciences.

[10]  T. M. Esdaille,et al.  Dark Light, Rod Saturation, and the Absolute and Incremental Sensitivity of Mouse Cone Vision , 2010, The Journal of Neuroscience.

[11]  Yi Zhang,et al.  Segregated Glycine-Glutamate Co-transmission from vGluT3 Amacrine Cells to Contrast-Suppressed and Contrast-Enhanced Retinal Circuits , 2016, Neuron.

[12]  Bart G Borghuis,et al.  Form and Function of the M4 Cell, an Intrinsically Photosensitive Retinal Ganglion Cell Type Contributing to Geniculocortical Vision , 2012, The Journal of Neuroscience.

[13]  S. Massey,et al.  Differential properties of two gap junctional pathways made by AII amacrine cells , 1995, Nature.

[14]  M. Feller,et al.  Visual Stimulation Reverses the Directional Preference of Direction-Selective Retinal Ganglion Cells , 2012, Neuron.

[15]  J. B. Demb,et al.  Functional Circuitry of the Retinal Ganglion Cell's Nonlinear Receptive Field , 1999, The Journal of Neuroscience.

[16]  Philipp Berens,et al.  Connectivity map of bipolar cells and photoreceptors in the mouse retina , 2016, bioRxiv.

[17]  Matthias Bethge,et al.  The functional diversity of retinal ganglion cells in the mouse , 2015, Nature.

[18]  Lyle J. Borg-Graham,et al.  The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell , 2001, Nature Neuroscience.

[19]  S. Bloomfield,et al.  Rod Vision: Pathways and Processing in the Mammalian Retina , 2001, Progress in Retinal and Eye Research.

[20]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[21]  Nicholas W. Oesch,et al.  Tetrodotoxin-Resistant Sodium Channels Contribute to Directional Responses in Starburst Amacrine Cells , 2010, PloS one.

[22]  P. Detwiler,et al.  A Dendrite-Autonomous Mechanism for Direction Selectivity in Retinal Starburst Amacrine Cells , 2007, PLoS biology.

[23]  Zhiyin Liang,et al.  The ON Pathway Rectifies the OFF Pathway of the Mammalian Retina , 2010, The Journal of Neuroscience.

[24]  Masahito Yamagata,et al.  SIDEKICK 2 DIRECTS FORMATION OF A RETINAL CIRCUIT THAT DETECTS DIFFERENTIAL MOTION , 2015, Nature.

[25]  E. Marder,et al.  From the connectome to brain function , 2013, Nature Methods.

[26]  F. Rieke,et al.  Single-Photon Absorptions Evoke Synaptic Depression in the Retina to Extend the Operational Range of Rod Vision , 2008, Neuron.

[27]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[28]  Mark S. Cembrowski,et al.  Adaptation to Background Light Enables Contrast Coding at Rod Bipolar Cell Synapses , 2014, Neuron.

[29]  J. B. Demb,et al.  Functional circuitry of visual adaptation in the retina , 2008, The Journal of physiology.

[30]  H. Saito,et al.  Morphology of physiologically identified X‐, Y‐, and W‐type retinal ganglion cells of the cat , 1983, The Journal of comparative neurology.

[31]  Fred Rieke,et al.  The spatial structure of a nonlinear receptive field , 2012, Nature Neuroscience.

[32]  H. Barlow,et al.  Responses to single quanta of light in retinal ganglion cells of the cat. , 1971, Vision research.

[33]  B. Roska,et al.  Rods in daylight act as relay cells for cone-driven horizontal cell–mediated surround inhibition , 2014, Nature Neuroscience.

[34]  Jonathan B Demb,et al.  Intrinsic properties and functional circuitry of the AII amacrine cell , 2012, Visual Neuroscience.

[35]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[36]  A. Borst,et al.  Seeing Things in Motion: Models, Circuits, and Mechanisms , 2011, Neuron.

[37]  R. Masland The Neuronal Organization of the Retina , 2012, Neuron.

[38]  H. Barlow,et al.  Change of organization in the receptive fields of the cat's retina during dark adaptation , 1957, The Journal of physiology.

[39]  B. Völgyi,et al.  GABA blockade unmasks an OFF response in ON direction selective ganglion cells in the mammalian retina , 2009, The Journal of physiology.

[40]  Ji-Jie Pang,et al.  Direct rod input to cone BCs and direct cone input to rod BCs challenge the traditional view of mammalian BC circuitry , 2009, Proceedings of the National Academy of Sciences.

[41]  Frank S Werblin,et al.  Six different roles for crossover inhibition in the retina: Correcting the nonlinearities of synaptic transmission , 2010, Visual Neuroscience.

[42]  Benjamin Sivyer,et al.  Direction selectivity in the retina: symmetry and asymmetry in structure and function , 2012, Nature Reviews Neuroscience.

[43]  S. Sherman,et al.  Structure/function relationships of retinal ganglion cells in the cat , 1984, Brain Research.

[44]  Andrey V Dmitriev,et al.  Dendritic compartmentalization of chloride cotransporters underlies directional responses of starburst amacrine cells in retina , 2006, Proceedings of the National Academy of Sciences.

[45]  J. O’Brien,et al.  The ever-changing electrical synapse , 2014, Current Opinion in Neurobiology.

[46]  F. Rieke,et al.  Controlling the Gain of Rod-Mediated Signals in the Mammalian Retina , 2006, The Journal of Neuroscience.

[47]  James M. Jeanne,et al.  Local inhibition modulates learning-dependent song encoding in the songbird auditory cortex. , 2013, Journal of Neurophysiology.

[48]  Nicholas W. Oesch,et al.  Ribbon synapses compute temporal contrast and encode luminance in retinal rod bipolar cells , 2011, Nature Neuroscience.

[49]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[50]  J. Marvin,et al.  Two-Photon Imaging of Nonlinear Glutamate Release Dynamics at Bipolar Cell Synapses in the Mouse Retina , 2013, The Journal of Neuroscience.

[51]  K. Briggman,et al.  Specific Wiring of Distinct Amacrine Cells in the Directionally Selective Retinal Circuit Permits Independent Coding of Direction and Size , 2015, Neuron.

[52]  Katja Reinhard,et al.  Retinal output changes qualitatively with every change in ambient illuminance , 2014, Nature Neuroscience.

[53]  F. Werblin,et al.  Vertical interactions across ten parallel, stacked representations in the mammalian retina , 2001, Nature.

[54]  B. Völgyi,et al.  Masked excitatory crosstalk between the ON and OFF visual pathways in the mammalian retina , 2011, The Journal of physiology.

[55]  C. Ribelayga,et al.  The Circadian Clock in the Retina Controls Rod-Cone Coupling , 2008, Neuron.

[56]  D. Kerschensteiner,et al.  Ambient illumination switches contrast preference of specific retinal processing streams. , 2015, Journal of neurophysiology.

[57]  Botond Roska,et al.  Ambient Illumination Toggles a Neuronal Circuit Switch in the Retina and Visual Perception at Cone Threshold , 2013, Neuron.

[58]  Fred Rieke,et al.  Signals and noise in an inhibitory interneuron diverge to control activity in nearby retinal ganglion cells , 2008, Nature Neuroscience.

[59]  Srinivas C. Turaga,et al.  Space-time wiring specificity supports direction selectivity in the retina , 2014, Nature.

[60]  B. Völgyi,et al.  Convergence and Segregation of the Multiple Rod Pathways in Mammalian Retina , 2004, The Journal of Neuroscience.

[61]  C. Schreiner,et al.  A synaptic memory trace for cortical receptive field plasticity , 2007, Nature.

[62]  Rava Azeredo da Silveira,et al.  Approach sensitivity in the retina processed by a multifunctional neural circuit , 2009, Nature Neuroscience.

[63]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[64]  Y. Fukuda,et al.  Morphological correlates of physiologically identified Y-, X-, and W-cells in cat retina. , 1984, Journal of neurophysiology.

[65]  Fred Rieke,et al.  Review the Challenges Natural Images Pose for Visual Adaptation , 2022 .

[66]  Nicholas W. Oesch,et al.  Genetic targeting and physiological features of VGLUT3+ amacrine cells , 2011, Visual Neuroscience.

[67]  D. Mastronarde Correlated firing of cat retinal ganglion cells. II. Responses of X- and Y-cells to single quantal events. , 1983, Journal of neurophysiology.

[68]  F. Rieke,et al.  Coincidence Detection of Single-Photon Responses in the Inner Retina at the Sensitivity Limit of Vision , 2014, Current Biology.

[69]  D. Kerschensteiner,et al.  An excitatory amacrine cell detects object motion and provides feature-selective input to ganglion cells in the mouse retina , 2015, eLife.

[70]  H. Barlow,et al.  Selective Sensitivity to Direction of Movement in Ganglion Cells of the Rabbit Retina , 1963, Science.

[71]  William N. Grimes,et al.  The Synaptic and Circuit Mechanisms Underlying a Change in Spatial Encoding in the Retina , 2014, Neuron.

[72]  L. Maffei,et al.  Spatial frequency and orientation tuning curves of visual neurones in the cat: Effects of mean luminance , 1977, Experimental Brain Research.

[73]  Saskia E. J. de Vries,et al.  Retinal Ganglion Cells Can Rapidly Change Polarity from Off to On , 2007, PLoS biology.

[74]  J. B. Demb,et al.  Disinhibition Combines with Excitation to Extend the Operating Range of the OFF Visual Pathway in Daylight , 2008, The Journal of Neuroscience.

[75]  H. Barlow Summation and inhibition in the frog's retina , 1953, The Journal of physiology.

[76]  N M Grzywacz,et al.  Is the input to a GABAergic synapse the sole asymmetry in turtle's retinal directional selectivity? , 1996, Visual Neuroscience.

[77]  B. Völgyi,et al.  The diverse functional roles and regulation of neuronal gap junctions in the retina , 2009, Nature Reviews Neuroscience.

[78]  C. Ribelayga,et al.  Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina , 2015, Journal of Physiology.

[79]  J. Nathans,et al.  A Novel Signaling Pathway from Rod Photoreceptors to Ganglion Cells in Mammalian Retina , 1998, Neuron.

[80]  Adam Bleckert,et al.  A Role for Synaptic Input Distribution in a Dendritic Computation of Motion Direction in the Retina , 2016, Neuron.

[81]  M. Feller,et al.  Visual Stimulation Switches the Polarity of Excitatory Input to Starburst Amacrine Cells , 2014, Neuron.

[82]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[83]  Fred Rieke,et al.  Cellular and Circuit Mechanisms Shaping the Perceptual Properties of the Primate Fovea , 2017, Cell.

[84]  Michael P Stryker,et al.  Intrinsic ON Responses of the Retinal OFF Pathway Are Suppressed by the ON Pathway , 2006, The Journal of Neuroscience.