New physics searches with heavy-ion collisions at the CERN Large Hadron Collider

This document summarises proposed searches for new physics accessible in the heavy-ion mode at the CERN Large Hadron Collider (LHC), both through hadronic and ultraperipheral $\gamma\gamma$ interactions, and that have a competitive or, even, unique discovery potential compared to standard proton-proton collision studies. Illustrative examples include searches for new particles -- such as axion-like pseudoscalars, radions, magnetic monopoles, new long-lived particles, dark photons, and sexaquarks as dark matter candidates -- as well as new interactions, such as non-linear or non-commutative QED extensions. We argue that such interesting possibilities constitute a well-justified scientific motivation, complementing standard quark-gluon-plasma physics studies, to continue running with ions at the LHC after the Run-4, i.e. beyond 2030, including light and intermediate-mass ion species, accumulating nucleon-nucleon integrated luminosities in the accessible fb$^{-1}$ range per month.

[1]  L. Beresford,et al.  Search Strategy for Sleptons and Dark Matter Using the LHC as a Photon Collider. , 2019, Physical review letters.

[2]  A. Giammanco,et al.  New long-lived particle searches in heavy-ion collisions at the LHC , 2019, Physical Review D.

[3]  W. Y. Chan,et al.  Observation of Light-by-Light Scattering in Ultraperipheral Pb+Pb Collisions with the ATLAS Detector. , 2019, Physical review letters.

[4]  A. S. Mete,et al.  Observation of Light-by-Light Scattering in Ultraperipheral Pb+Pb Collisions with the ATLAS Detector. , 2019, Physical review letters.

[5]  Stony Brook University,et al.  Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider , 2019, Journal of Physics G: Nuclear and Particle Physics.

[6]  M. Kramer,et al.  Scrutinizing the evidence for dark matter in cosmic-ray antiprotons , 2019, Physical Review D.

[7]  H. Dembinski,et al.  Core-corona effect in hadron collisions and muon production in air showers , 2019, Physical Review D.

[8]  H. Dembinski,et al.  The ratio of electromagnetic to hadronic energy in high energy hadron collisions as a probe for collective effects, and implications for the muon production in cosmic ray air showers , 2019 .

[9]  H. Dembinski,et al.  Report on Tests and Measurements of Hadronic Interaction Properties with Air Showers , 2019, EPJ Web of Conferences.

[10]  A. Bodek,et al.  Beyond the Standard Model Physics at the HL-LHC and HE-LHC , 2018, 1812.07831.

[11]  I. Vitev,et al.  Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams , 2018, 1812.06772.

[12]  M. Tasevsky,et al.  LHC searches for Dark Matter in compressed mass scenarios: challenges in the forward proton mode , 2018, Journal of High Energy Physics.

[13]  Z. Ajaltouni,et al.  Measurement of Antiproton Production in p−He Collisions at √sNN=110 GeV , 2018 .

[14]  A. Giammanco,et al.  Searching for New Long-Lived Particles in Heavy-Ion Collisions at the LHC. , 2018, Physical review letters.

[15]  V. Khoze,et al.  Exclusive LHC physics with heavy ions: SuperChic 3 , 2018, The European Physical Journal C.

[16]  V. M. Ghete,et al.  Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at sNN=5.02TeV , 2018, Physics Letters B.

[17]  A. Giammanco,et al.  A Heavy Metal Path to New Physics , 2018, Proceedings of XXVII International Workshop on Deep-Inelastic Scattering and Related Subjects — PoS(DIS2019).

[18]  S. Reddy,et al.  Deeply bound dibaryon is incompatible with neutron stars and supernovae , 2018, Physical Review D.

[19]  D. d’Enterria,et al.  Impact of QCD Jets and Heavy-quark Production in Cosmic-Ray Proton Atmospheric Showers up to 1020 eV , 2018, The Astrophysical Journal.

[20]  E. Kolb,et al.  Dibaryons cannot be the dark matter , 2018, Physical Review D.

[21]  V. Mitsou,et al.  Monopole production via photon fusion and Drell–Yan processes: MadGraph implementation and perturbativity via velocity-dependent coupling and magnetic moment as novel features , 2018, The European Physical Journal C.

[22]  L. A. Granado Cardoso,et al.  Measurement of Antiproton Production in p-He Collisions at sqrt[s_{NN}]=110  GeV. , 2018, Physical review letters.

[23]  Matthew McCullough,et al.  Long-lived particles at the energy frontier: the MATHUSLA physics case , 2018, Reports on progress in physics. Physical Society.

[24]  G. Farrar A precision test of the nature of Dark Matter and a probe of the QCD phase transition , 2018, 1805.03723.

[25]  C. Gross,et al.  Dark matter in the standard model? , 2018, Physical Review D.

[26]  M. Unger,et al.  Current status and desired precision of the isotopic production cross sections relevant to astrophysics of cosmic rays: Li, Be, B, C, and N. , 2018, Physical review. C.

[27]  Q. Yuan,et al.  Revisit of cosmic ray antiprotons from dark matter annihilation with updated constraints on the background model from AMS-02 and collider data , 2018, Journal of Cosmology and Astroparticle Physics.

[28]  D. F. Lodato,et al.  Production of deuterons, tritons, He 3 nuclei, and their antinuclei in pp collisions at s =0.9, 2.76, and 7 TeV , 2018 .

[29]  M. D. Mauro,et al.  Production cross sections of cosmic antiprotons in the light of new data from the NA61 and LHCb experiments , 2018, Proceedings of 36th International Cosmic Ray Conference — PoS(ICRC2019).

[30]  R. Orava,et al.  Search for magnetic monopoles with the MoEDAL forward trapping detector in 2.11 fb−1 of 13 TeV proton–proton collisions at the LHC , 2017, Physics Letters B.

[31]  F. Richard Search for a light radion at HL-LHC and ILC250 , 2017, 1712.06410.

[32]  M. Winkler,et al.  A precision search for WIMPs with charged cosmic rays , 2017, 1712.00002.

[33]  H. K. Lou,et al.  LHC limits on axion-like particles from heavy-ion collisions , 2017, 1709.07110.

[34]  V. M. Ghete,et al.  Observation of Top Quark Production in Proton-Nucleus Collisions. , 2017, Physical review letters.

[35]  C. Hearty,et al.  Revised constraints and Belle II sensitivity for visible and invisible axion-like particles , 2017, 1709.00009.

[36]  G. Farrar Stable Sexaquark. , 2017, 1708.08951.

[37]  W. K. Sauter,et al.  Production of magnetic monopoles and monopolium in peripheral collisions , 2017, 1707.04170.

[38]  A. Rajantie,et al.  Magnetic Monopole Mass Bounds from Heavy-Ion Collisions and Neutron Stars. , 2017, Physical review letters.

[39]  A. Cuoco,et al.  Probing dark matter annihilation in the Galaxy with antiprotons and gamma rays , 2017, 1704.08258.

[40]  M. D. Mauro,et al.  Prescriptions on antiproton cross section data for precise theoretical antiproton flux predictions , 2017, 1704.03663.

[41]  J. Ellis,et al.  Light-by-Light Scattering Constraint on Born-Infeld Theory. , 2017, Physical review letters.

[42]  V. Vento,et al.  Multiphoton annihilation of monopolium , 2017, 1703.06649.

[43]  Atlas Collaboration Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC , 2017, 1702.01625.

[44]  R. Bruce,et al.  Heavy-Ion Collimation at the Large Hadron Collider , 2017 .

[45]  J. G. Contreras,et al.  LHC forward physics , 2016, 1611.05079.

[46]  A Filipčič,et al.  Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory , 2016, 1610.08509.

[47]  Y. S. Tsai,et al.  Possible Dark Matter Annihilation Signal in the AMS-02 Antiproton Data. , 2016, Physical review letters.

[48]  M. Krämer,et al.  Novel Dark Matter Constraints from Antiprotons in Light of AMS-02. , 2016, Physical review letters.

[49]  R. Sagdeev,et al.  Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station. , 2016, Physical review letters.

[50]  H. K. Lou,et al.  Searching for Axionlike Particles with Ultraperipheral Heavy-Ion Collisions. , 2016, Physical review letters.

[51]  Spencer R. Klein,et al.  STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions , 2016, Computer Physics Communications.

[52]  M. I. Besana,et al.  Power Deposition in LHC Magnets Due to Bound-Free Pair Production in the Experimental Insertions , 2016 .

[53]  Anton Lechner,et al.  Bound-Free Pair Production in LHC Pb-Pb Operation at 6.37 Z TeV per Beam , 2016 .

[54]  Daniel Wollmann,et al.  Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider , 2016 .

[55]  Wei Xue,et al.  Proposed Inclusive Dark Photon Search at LHCb. , 2016, Physical review letters.

[56]  D. d’Enterria,et al.  Erratum: Observing Light-by-Light Scattering at the Large Hadron Collider [Phys. Rev. Lett. 111, 080405 (2013)]. , 2016, Physical review letters.

[57]  L. Rossi,et al.  Chapter 1: High Luminosity Large Hadron Collider HL-LHC , 2016, 1705.08830.

[58]  G. Brooijmans,et al.  Cosmic ray air showers from sphalerons , 2016, 1602.00647.

[59]  Lucio Rossi,et al.  High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report , 2015 .

[60]  M. Schaumann Heavy-ion performance of the LHC and future colliders , 2015 .

[61]  Xu-Guang Huang Electromagnetic fields and anomalous transports in heavy-ion collisions—a pedagogical review , 2015, Reports on progress in physics. Physical Society.

[62]  S. Grinstein,et al.  Technical Design Report for the ATLAS Forward Proton Detector , 2015 .

[63]  R. Bruce,et al.  Betatron Cleaning for Heavy Ion Beams with IR7 Dispersion Suppressor Collimators , 2015 .

[64]  C. L. Silva,et al.  Search for dark photons from neutral meson decays in p+p and d+ Au collisions at sNN =200 GeV , 2015 .

[65]  S. Buitink,et al.  Publisher's Note: Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events [Phys. Rev. D, 91 , 032003 (2015)] , 2015 .

[66]  Jesse D. Roberts,et al.  Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events , 2015 .

[67]  R. Sagdeev,et al.  Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station. , 2014, Physical review letters.

[68]  Mario Deile,et al.  CMS-TOTEM Precision Proton Spectrometer , 2014 .

[69]  K. O. Eyser,et al.  Search for dark photons from neutral meson decays in $p+p$ and $d$$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV , 2014, 1409.0851.

[70]  G. Steele,et al.  POWER DEPOSITION IN LHC MAGNETS WITH AND WITHOUT DISPERSION SUPPRESSOR COLLIMATORS DOWNSTREAM OF THE BETATRON CLEANING INSERTION , 2014 .

[71]  Stefano Redaelli,et al.  Cleaning performance with 11T dipoles and local dispersion suppressor collimation at the LHC , 2014 .

[72]  C. Papageorgakis,et al.  Revisiting soliton contributions to perturbative amplitudes , 2014, 1404.0016.

[73]  D. d’Enterria,et al.  Observing light-by-light scattering at the Large Hadron Collider. , 2013, Physical Review Letters.

[74]  V. Mitsou,et al.  Looking for magnetic monopoles at LHC with diphoton events , 2012, 1205.6120.

[75]  A. Morsch,et al.  Proton–nucleus collisions at the LHC: scientific opportunities and requirements , 2011, 1105.3919.

[76]  Tanguy Pierog,et al.  Constraints from the first LHC data on hadronic event generators for ultra-high energy cosmic-ray physics , 2011, 1101.5596.

[77]  S. Knapen,et al.  Bounds from LEP on unparticle interactions with electroweak bosons , 2010, 1012.3737.

[78]  M. Strassler,et al.  Simple-minded unitarity constraint and an application to unparticles , 2009, 0912.2348.

[79]  D. d’Enterria,et al.  Study of Higgs boson production and its b-bbar decay in gamma-gamma processes in proton-nucleus collisions at the LHC , 2009, 0909.3047.

[80]  R. Bruce,et al.  Beam losses from ultra-peripheral nuclear collisions between 208Pb82+ ions in the Large Hadron Collider and their alleviation , 2009, 0908.2527.

[81]  T. Tsang,et al.  The FP420 R&D Project: Higgs and New Physics with Forward Protons at the LHC , 2008, 0806.0302.

[82]  B. Grinstein,et al.  Comments on Unparticles , 2008, 0801.1140.

[83]  O. Cakir,et al.  Unparticle searches through gamma–gamma scattering , 2007, 0712.3814.

[84]  L. Mclerran,et al.  The effects of topological charge change in heavy ion collisions: “Event by event P and CP violation” , 2007, 0711.0950.

[85]  S. A. Sadovsky,et al.  The physics of ultraperipheral collisions at the LHC , 2007, 0706.3356.

[86]  S. Klein,et al.  Observations of beam losses due to bound-free pair production in a heavy-ion collider. , 2007, Physical review letters.

[87]  Y. Kulchitsky,et al.  On Production of Magnetic Monopoles via γγ Fusion at High Energy pp Collisions , 2006 .

[88]  Yakov M. Shnir,et al.  Magnetic monopoles , 2011 .

[89]  T. Asaka,et al.  The νMSM, dark matter and baryon asymmetry of the universe , 2005, hep-ph/0505013.

[90]  Elena Shaposhnikova,et al.  LIMITS TO THE PERFORMANCE OF THE LHC WITH ION BEAMS , 2004 .

[91]  A. Ferrari,et al.  COLLIMATION OF HEAVY ION BEAMS IN LHC , 2004 .

[92]  J. Polchinski Monopoles, Duality, and String Theory , 2003, hep-th/0304042.

[93]  K. Milton,et al.  Theoretical and experimental status of magnetic monopoles , 2001, hep-ex/0602040.

[94]  J. Hewett,et al.  Signals for noncommutative interactions at linear colliders , 2000, hep-ph/0010354.

[95]  S. Klein Localized beampipe heating due to e- capture and nuclear excitation in heavy ion colliders , 2000, physics/0005032.

[96]  Huang,et al.  Evidence for changing of cosmic ray composition between 10(17) and 10(18) eV from multicomponent measurements , 2000, Physical review letters.

[97]  S. Shenker,et al.  Noncommutative gauge dynamics from the string worldsheet , 2000, hep-th/0003215.

[98]  K. Milton,et al.  Direct and Indirect Searches for Low-Mass Magnetic Monopoles , 1999, hep-ph/9906526.

[99]  H. Davoudiasl gamma gamma -> gamma gamma as a Test of Weak Scale Quantum Gravity at the NLC , 1999, hep-ph/9904425.

[100]  K. Cheung Diphoton signals for Low Scale Gravity in Extra Dimensions , 1999, hep-ph/9904266.

[101]  J. S. Hoftun,et al.  Search for heavy pointlike dirac monopoles , 1998 .

[102]  I. Ginzburg,et al.  Search for a heavy magnetic monopole at the Fermilab Tevatron and CERN LHC , 1998 .

[103]  I. Ginzburg,et al.  Search for a heavy magnetic monopole at the Tevatron and CERN LHC , 1998, hep-ph/9802310.

[104]  Y. He Search for a Dirac Magnetic Monopole in High Energy Nucleus-Nucleus Collisions , 1997 .

[105]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[106]  W. Weise Chiral symmetry breaking , 1992 .

[107]  E. Fradkin,et al.  Non-linear electrodynamics from quantized strings , 1985 .

[108]  E. Witten Cosmic separation of phases , 1984 .

[109]  A. Drukier,et al.  Monopole pair creation in energetic collisions: Is it possible , 1982 .

[110]  I. Affleck,et al.  Monopole Pair Production in a Magnetic Field , 1982 .

[111]  E. Witten Baryons in the 1/n Expansion , 1979 .

[112]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[113]  R. Peccei,et al.  CP Conservation in the Presence of Pseudoparticles , 1977 .

[114]  Robert L. Jaffe,et al.  Perhaps a Stable Dihyperon , 1977 .

[115]  Gerard 't Hooft,et al.  Magnetic monopoles in unified gauge theories , 1974 .

[116]  Alexander M. Polyakov,et al.  Particle spectrum in quantum field theory , 1974 .

[117]  L. Infeld,et al.  Foundations of the New Field Theory , 1933, Nature.

[118]  P. Dirac Quantised Singularities in the Electromagnetic Field , 1931 .

[119]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[120]  P. Baudrenghien,et al.  FIRST XENON-XENON COLLISIONS IN THE LHC , 2018 .

[121]  R. Jaffef Perhaps a Stable Dihyperon , 2011 .

[122]  Daniela Daibenzeiher Report from Working Group 3 , 2007 .

[123]  S. Tepikian,et al.  First observations of beam losses due to bound-free pair production in a heavy-ion collider , 2007 .

[124]  C. Carli THE LHC AS A PROTON-NUCLEUS COLLIDER , 2006 .

[125]  W. Yao,et al.  Review of Particle Physics (2006) , 2006 .

[126]  Stanford Linear Accelerator γγ → γγ as a Test of Weak Scale Quantum Gravity at the NLC ∗ , 1999 .

[127]  B. Klecker,et al.  Report of Working Group 3 , 1998 .

[128]  R. Carrigan,et al.  Magnetic monopoles , 1983, Nature.

[129]  I. Ginzburg,et al.  The Two photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation , 1975 .

[130]  C. Goebel SPATIAL EXTENT OF MAGNETIC MONOPOLES. , 1970 .