Open Data Structures

Every computer science curriculum in the world includes a course on data structures and algorithms. Data structures are that important; they im- prove our quality of life and even save lives on a regular basis. Many multi-million and several multi-billion dollar companies have been built around data structures.

[1]  Jean Vuillemin,et al.  A data structure for manipulating priority queues , 1978, CACM.

[2]  Helmut Prodinger,et al.  The path length of random skip lists , 1994, Acta Informatica.

[3]  Prokash Sinha A memory-efficient doubly linked list , 2005 .

[4]  Andrew W. Appel,et al.  Unrolling lists , 1994, LFP '94.

[5]  Martin Dietzfelbinger,et al.  Universal Hashing and k-Wise Independent Random Variables via Integer Arithmetic without Primes , 1996, STACS.

[6]  Mikkel Thorup,et al.  The power of simple tabulation hashing , 2010, STOC.

[7]  Prosenjit Bose,et al.  Dynamic optimality for skip lists and B-trees , 2008, SODA '08.

[8]  Peter van Emde Boas,et al.  Preserving Order in a Forest in Less Than Logarithmic Time and Linear Space , 1977, Inf. Process. Lett..

[9]  Harumi A. Kuno,et al.  Modern B-tree techniques , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[10]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..

[11]  Conrado Martínez,et al.  Randomized binary search trees , 1998, JACM.

[12]  Timothy J. Purcell Sorting and searching , 2005, SIGGRAPH Courses.

[13]  J. Hopcroft,et al.  Algorithm 447: efficient algorithms for graph manipulation , 1973, CACM.

[14]  Ronald L. Rivest,et al.  Scapegoat trees , 1993, SODA '93.

[15]  Sheldon M. Ross,et al.  Probability Models for Computer Science , 2001 .

[16]  Clark A. Crane,et al.  Linear Lists and Prorty Queues as Balanced Binary Trees , 1972, Outstanding Dissertations in the Computer Sciences.

[17]  C. A. R. Hoare,et al.  Algorithm 64: Quicksort , 1961, Commun. ACM.

[18]  Douglas Comer,et al.  Ubiquitous B-Tree , 1979, CSUR.

[19]  Dan S. Wallach,et al.  Denial of Service via Algorithmic Complexity Attacks , 2003, USENIX Security Symposium.

[20]  Funda Ergün,et al.  Biased dictionaries with fast insert/deletes , 2001, STOC '01.

[21]  Donald E. Knuth,et al.  fundamental algorithms , 1969 .

[22]  Arne Andersson General Balanced Trees , 1999, J. Algorithms.

[23]  Alok Aggarwal,et al.  The input/output complexity of sorting and related problems , 1988, CACM.

[24]  William Pugh,et al.  A skip list cookbook , 1990 .

[25]  Hugo Krawczyk,et al.  UMAC: Fast and Secure Message Authentication , 1999, CRYPTO.

[26]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .

[27]  Yossi Matias,et al.  Polynomial Hash Functions Are Reliable (Extended Abstract) , 1992, ICALP.

[28]  Anna Gambin,et al.  Randomized Meldable Priority Queues , 1998, SOFSEM.

[29]  Amr Elmasry,et al.  Pairing heaps with O(log log n) decrease cost , 2009, SODA.

[30]  M. Panella Associate Editor of the Journal of Computer and System Sciences , 2014 .

[31]  C. Y. Lee An Algorithm for Path Connections and Its Applications , 1961, IRE Trans. Electron. Comput..

[32]  Jean Vuillemin,et al.  A unifying look at data structures , 1980, CACM.

[33]  Helmut Prodinger,et al.  Analysis of an Optimized Search Algorithm for Skip Lists , 1995, Theor. Comput. Sci..

[34]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  Friedhelm Meyer auf der Heide,et al.  Dynamic perfect hashing: upper and lower bounds , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[37]  Erik D. Demaine,et al.  Resizable Arrays in Optimal Time and Space , 1999, WADS.

[38]  Arne Andersson,et al.  Balanced Search Trees Made Simple , 1993, WADS.

[39]  Mikkel Thorup,et al.  Randomization does not help searching predecessors , 2007, SODA '07.

[40]  M. AdelsonVelskii,et al.  AN ALGORITHM FOR THE ORGANIZATION OF INFORMATION , 1963 .

[41]  Rudolf Bayer,et al.  Organization and maintenance of large ordered indexes , 1972, Acta Informatica.

[42]  L FredmanMichael,et al.  Storing a Sparse Table with 0(1) Worst Case Access Time , 1984 .

[43]  Leonidas J. Guibas,et al.  A dichromatic framework for balanced trees , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[44]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[45]  Martti Penttonen,et al.  A Reliable Randomized Algorithm for the Closest-Pair Problem , 1997, J. Algorithms.

[46]  Robert E. Tarjan,et al.  Self-adjusting binary trees , 1983, STOC.

[47]  Paul F. Dietz,et al.  Lower Bounds for Monotonic List Labeling , 1990, SWAT.

[48]  Bruce A. Reed,et al.  The height of a random binary search tree , 2003, JACM.

[49]  Michael T. Goodrich,et al.  Tiered Vectors: Efficient Dynamic Arrays for Rank-Based Sequences , 1999, WADS.

[50]  Arne Andersson,et al.  Improving Partial Rebuilding by Using Simple Balance Criteria , 1989, WADS.

[51]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[52]  Peter Lammich,et al.  Collections Framework , 2009, Arch. Formal Proofs.

[53]  Luc Devroye,et al.  Applications of the theory of records in the study of random trees , 1988, Acta Informatica.

[54]  Rasmus Pagh,et al.  Cuckoo Hashing , 2001, Encyclopedia of Algorithms.

[55]  Dan E. Willard,et al.  Log-logarithmic worst-case range queries are possible in space ⊕(N) , 1983 .

[56]  J. P.,et al.  Calculus Made Easy , 1915, Nature.

[57]  J. Ian Munro,et al.  Deterministic skip lists , 1992, SODA '92.

[58]  Rasmus Pagh,et al.  Optimality in External Memory Hashing , 2007, Algorithmica.

[59]  Michael T. Goodrich,et al.  Biased Skip Lists , 2002, Algorithmica.

[60]  J. Ian Munro,et al.  Average search and update costs in skip lists , 1992, BIT.

[61]  William Pugh,et al.  Skip Lists: A Probabilistic Alternative to Balanced Trees , 1989, WADS.

[62]  Cecilia R. Aragon,et al.  Randomized search trees , 2005, Algorithmica.

[63]  Robert E. Tarjan,et al.  The pairing heap: A new form of self-adjusting heap , 2005, Algorithmica.

[64]  R. Bayer,et al.  Organization and maintenance of large ordered indices , 1970, SIGFIDET '70.

[65]  Michael L. Fredman,et al.  Surpassing the Information Theoretic Bound with Fusion Trees , 1993, J. Comput. Syst. Sci..