Mathematical and Metaheuristic Applications in Design Optimization of Steel Frame Structures: An Extensive Review

The type of mathematical modeling selected for the optimum design problems of steel skeletal frames affects the size and mathematical complexity of the programming problem obtained. Survey on the structural optimization literature reveals that there are basically two types of design optimization formulation. In the first type only cross sectional properties of frame members are taken as design variables. In such formulation when the values of design variables change during design cycles, it becomes necessary to analyze the structure and update the response of steel frame to the external loading. Structural analysis in this type is a complementary part of the design process. In the second type joint coordinates are also treated as design variables in addition to the cross sectional properties of members. Such formulation eliminates the necessity of carrying out structural analysis in every design cycle. The values of the joint displacements are determined by the optimization techniques in addition to cross sectional properties. The structural optimization literature contains structural design algorithms that make use of both type of formulation. In this study a review is carried out on mathematical and metaheuristic algorithms where the effect of the mathematical modeling on the efficiency of these algorithms is discussed.

[1]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[2]  R. Haftka Simultaneous analysis and design , 1985 .

[3]  Charles V. Camp DESIGN OF SPACE TRUSSES USING BIG BANG–BIG CRUNCH OPTIMIZATION , 2007 .

[4]  Mehmet Polat Saka,et al.  OPTIMUM DESIGN OF PIN-JOINTED STEEL STRUCTURES WITH PRACTICAL APPLICATIONS , 1990 .

[5]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[6]  Jaroslaw Sobieszczanski-Sobieski,et al.  Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization , 2002 .

[7]  Kamran Behdinan,et al.  Particle swarm approach for structural design optimization , 2007 .

[8]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[9]  조효남,et al.  Load & Resistance Factor Design - AISC , Manual of Steel Construction , 2nd Edition - , 1995 .

[10]  Xin-She Yang,et al.  Engineering Optimization: An Introduction with Metaheuristic Applications , 2010 .

[11]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[12]  V. B. Venkayya,et al.  ENERGY DISTRIBUTION IN AN OPTIMUM STRUCTURAL DESIGN , 1969 .

[13]  Mehmet Polat Saka,et al.  Optimum design of steel frames with stability constraints , 1991 .

[14]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[15]  B. Farahmand Azar,et al.  AN IMPROVED HPSACO FOR ENGINEERING OPTIMUM DESIGN PROBLEMS , 2011 .

[16]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[17]  Mehmet Polat Saka,et al.  Optimum design of unbraced steel frames to LRFD-AISC using particle swarm optimization , 2012, Adv. Eng. Softw..

[18]  Zong Woo Geem,et al.  Harmony Search Algorithms in Structural Engineering , 2011, Computational Optimization and Applications in Engineering and Industry.

[19]  N. S. Khot,et al.  Minimum weight design of truss structures with geometric nonlinear behavior , 1985 .

[20]  M. P. Saka Optimum Design of Skeletal Structures: A Review , 2003 .

[21]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[22]  P. NarayananS. LOAD AND RESISTANCE FACTOR DESIGN , 2013 .

[23]  Thomas Bäck,et al.  Evolution Strategies for Mixed-Integer Optimization of Optical Multilayer Systems , 1995, Evolutionary Programming.

[24]  M. P. Saka,et al.  Adaptive Harmony Search Method for Structural Optimization , 2010 .

[25]  R. E. Griffith,et al.  A Nonlinear Programming Technique for the Optimization of Continuous Processing Systems , 1961 .

[26]  D. Kavlie,et al.  Application of non‐linear programming to optimum grillage design with non‐convex sets of variables , 1969 .

[27]  Shang He,et al.  An improved particle swarm optimizer for mechanical design optimization problems , 2004 .

[28]  Siamak Talatahari,et al.  A CHARGED SYSTEM SEARCH WITH A FLY TO BOUNDARY METHOD FOR DISCRETE OPTIMUM DESIGN OF TRUSS STRUCTURES , 2010 .

[29]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[30]  Siamak Talatahari,et al.  A particle swarm ant colony optimization for truss structures with discrete variables , 2009 .

[31]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[32]  S. Dreyfus,et al.  Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .

[33]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[34]  L. Berke,et al.  Structural optimization using optimality criteria , 1987 .

[35]  Barron J. Bichon,et al.  Design of Steel Frames Using Ant Colony Optimization , 2005 .

[36]  A. Morris Structural optimization by geometric programming , 1972 .

[37]  Qian Wang,et al.  Review of formulations for structural and mechanical system optimization , 2005 .

[38]  Edward A. Sadek,et al.  Optimization of structures having general cross-sectional relationships using an optimality criterion method , 1992 .

[39]  Gun-Shing Chen,et al.  OPTIMAL PLACEMENT OF ACTIVE/PASSIVE MEMBERS IN TRUSS STRUCTURES USING SIMULATED ANNEALING , 1991 .

[40]  A. Belegundu,et al.  Optimization Concepts and Applications in Engineering , 2011 .

[41]  Young Mook Yun,et al.  Optimum Design of Plane Steel Frame Structures using Second-Order Inelastic Analysis and a Genetic Algorithm , 2005 .

[42]  L. Coelho,et al.  An improved harmony search algorithm for synchronization of discrete-time chaotic systems , 2009 .

[43]  Mohsin R. Khan Optimality criterion techniques applied to frames having general cross-sectional relationships , 1984 .

[44]  M. S. Hayalioglu Optimum load and resistance factor design of steel space frames using genetic algorithm , 2001 .

[45]  Zong Woo Geem,et al.  Novel derivative of harmony search algorithm for discrete design variables , 2008, Appl. Math. Comput..

[46]  O. Hasançebi,et al.  Optimal design of planar and space structures with genetic algorithms , 2000 .

[47]  Mehmet Polat Saka,et al.  Optimum design of cellular beams using harmony search and particle swarm optimizers , 2011 .

[48]  Subramaniam Rajan,et al.  Sizing, Shape, and Topology Design Optimization of Trusses Using Genetic Algorithm , 1995 .

[49]  David Mautner Himmelblau,et al.  Applied Nonlinear Programming , 1972 .

[50]  Hk Issa,et al.  Effect of mutation schemes on convergence to optimum design of steel frames , 2010 .

[51]  Zong Woo Geem,et al.  Various continuous harmony search algorithms for web-based hydrologic parameter optimisation , 2010, Int. J. Math. Model. Numer. Optimisation.

[52]  Vassili Toropov,et al.  Design optimization of structural steelwork using a genetic algorithm, FEM and a system of design rules , 2001 .

[53]  Siamak Talatahari,et al.  Optimum design of skeletal structures using imperialist competitive algorithm , 2010 .

[54]  Claude Fleury,et al.  An efficient optimality criteria approach to the minimum weight design of elastic structures , 1980 .

[55]  Mehmet Polat Saka,et al.  Optimum spacing design of grillage systems using a genetic algorithm , 2000 .

[56]  Charles V. Camp,et al.  Design of Space Trusses Using Ant Colony Optimization , 2004 .

[57]  J. B. Rosen The gradient projection method for nonlinear programming: Part II , 1961 .

[58]  Zong Woo Geem,et al.  Harmony Search Algorithms for Structural Design Optimization , 2009 .

[59]  A Kaveh,et al.  OPTIMUM DESIGN OF STEEL SWAY FRAMES USING BIG BANGBIG CRUNCH ALGORITHM , 2011 .

[60]  E Atrek,et al.  New directions in optimum structural design , 1984 .

[61]  G. Zoutendijk,et al.  Methods of Feasible Directions , 1962, The Mathematical Gazette.

[62]  Mehmet Polat Saka Optimum design of steel frames with tapered members , 1997 .

[63]  R. G. Fenton,et al.  A Comparison of Numerical Optimization Methods for Engineering Design , 1974 .

[64]  N. S. Khot Nonlinear analysis of optimized structure with constraints on systemstability , 1982 .

[65]  Jakub Marecek,et al.  Handbook of Approximation Algorithms and Metaheuristics , 2010, Comput. J..

[66]  O. Hasançebi,et al.  Adaptive evolution strategies in structural optimization: Enhancing their computational performance with applications to large-scale structures , 2008 .

[67]  O. Hasançebi,et al.  Evaluation of crossover techniques in genetic algorithm based optimum structural design , 2000 .

[68]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[69]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[70]  Claus Mattheck,et al.  Design in Nature: Learning from Trees , 1998 .

[71]  V. Venkayya,et al.  Comparison of Optimality Criteria Algorithms for Minimum Weight Design of Structures , 1978 .

[72]  Zong Woo Geem,et al.  Harmony search for structural design , 2005, GECCO '05.

[73]  Ray Paton Computing with biological metaphors , 1994 .

[74]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[75]  A. Kaveh,et al.  Charged system search for optimum grillage system design using the LRFD-AISC code , 2010 .

[76]  Andrew Palmer,et al.  Optimal design of transmission towers by dynamic programming , 1972 .

[77]  Mehmet Ülker,et al.  Optimum Design of Space Trusses with Buckling Constraints by Means of Spreadsheets , 2001 .

[78]  A. Kaveh,et al.  Simultaneous topology and size optimization of structures by genetic algorithm using minimal length chromosome , 2006 .

[79]  Xin-She Yang,et al.  Engineering optimisation by cuckoo search , 2010, Int. J. Math. Model. Numer. Optimisation.

[80]  Theodore V. Galambos,et al.  Load and Resistance Factor Design for Steel , 1978 .

[81]  Wei Wang,et al.  Simultaneous partial topology and size optimization of a wing structure using ant colony and gradient based methods , 2011 .

[82]  S. O. Degertekin,et al.  A hybrid tabu-simulated annealing heuristic algorithm for optimum design of steel frames , 2008 .

[83]  Jasbir S. Arora,et al.  Methods for Discrete Variable Structural Optimization , 2000 .

[84]  Siamak Talatahari,et al.  A DISCRETE PARTICLE SWARM ANT COLONY OPTIMIZATION FOR DESIGN OF STEEL FRAMES , 2008 .

[85]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[86]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[87]  A. Dhingra,et al.  Single and multiobjective structural optimization in discrete‐continuous variables using simulated annealing , 1995 .

[88]  O. Hasançebi,et al.  EVALUATION OF TOPOLOGICAL FORMS FOR WEIGHT- EFFECTIVE OPTIMUM DESIGN OF SINGLE-SPAN STEEL TRUSS BRIDGES , 2011 .

[89]  Mehmet Polat Saka,et al.  Improving the performance of simulated annealing in structural optimization , 2010 .

[90]  Philip E. Gill,et al.  Practical optimization , 1981 .

[91]  Hojjat Adeli,et al.  Optimum Load and Resistance Factor Design of Steel Space-Frame Structures , 1997 .

[92]  L. Schmit,et al.  Approximation concepts for efficient structural synthesis , 1976 .

[93]  O. Hasançebi,et al.  Comparison of non-deterministic search techniques in the optimum design of real size steel frames , 2010 .

[94]  K. M. Gisvold,et al.  A Method for Nonlinear Mixed-Integer Programming and its Application to Design Problems , 1972 .

[95]  A. Kaveh,et al.  Size optimization of space trusses using Big Bang-Big Crunch algorithm , 2009 .

[96]  M. Papadrakakis,et al.  Structural optimization using evolutionary algorithms , 2002 .

[97]  Z. Geem Optimal Design of Water Distribution Networks Using Harmony Search , 2009 .

[98]  Enrique I. Tabak,et al.  Optimality Criteria Method for Building Frames , 1981 .

[99]  Donald E. Grierson,et al.  An efficient resizing technique for the design of tall steel buildings subject to multiple drift constraints , 1993 .

[100]  Jasbir S. Arora,et al.  Optimization of large‐scale truss structures using sparse SAND formulations , 2007 .

[101]  Ali Kaveh,et al.  HYBRID GENETIC ALGORITHM AND PARTICLE SWARM OPTIMIZATION FOR THE FORCE METHOD-BASED SIMULTANEOUS ANALYSIS AND DESIGN , 2010 .

[102]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[103]  Tomasz Arciszewski,et al.  Evolutionary computation and structural design: A survey of the state-of-the-art , 2005 .

[104]  C. Allin Cornell,et al.  Iterative Design and Structural Optimization , 1966 .

[105]  Jasbir S. Arora,et al.  Guide to structural optimization , 1997 .

[106]  V. Toğan,et al.  Optimization of 3d trusses with adaptive approach in genetic algorithms , 2006 .

[107]  Z. Geem Particle-swarm harmony search for water network design , 2009 .

[108]  Mehmet Polat Saka,et al.  Optimum Geometry Design of Geodesic Domes Using Harmony Search Algorithm , 2007 .

[109]  M. Géradin,et al.  Optimality criteria and mathematical programming in structural weight optimization , 1978 .

[110]  Xin-She Yang,et al.  Engineering optimisation by cuckoo search , 2010 .

[111]  Chris P. Pantelides,et al.  Annealing Strategy for Optimal Structural Design , 1996 .

[112]  Zong Woo Geem,et al.  Harmony Search Optimization: Application to Pipe Network Design , 2002 .

[113]  Charles W. Carroll The Created Response Surface Technique for Optimizing Nonlinear, Restrained Systems , 1961 .

[114]  V. Venkayya Optimality criteria: A basis for multidisciplinary design optimization , 1989 .

[115]  W. M. Jenkins,et al.  Towards structural optimization via the genetic algorithm , 1991 .

[116]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[117]  J R Saunders,et al.  A particle swarm optimizer with passive congregation. , 2004, Bio Systems.

[118]  S. Rajasekaran Optimal laminate sequence of non-prismatic thin-walled composite spatial members of generic section , 2005 .

[119]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[120]  P. Siarry,et al.  An improvement of the standard genetic algorithm fighting premature convergence in continuous optimization , 2000 .

[121]  O. Hasançebi,et al.  On efficient use of simulated annealing in complex structural optimization problems , 2002 .

[122]  Mehmet Polat Saka,et al.  Optimum design of single core shear walls , 1999 .

[123]  G. Flake The Computational Beauty of Nature , 1998 .

[124]  Mehmet Polat Saka,et al.  Optimum design of rigidly jointed frames , 1980 .

[125]  Zong Woo Geem Stochastic co-derivative of harmony search algorithm , 2011, Int. J. Math. Model. Numer. Optimisation.

[126]  Mehmet Polat Saka,et al.  Ant colony optimization of irregular steel frames including elemental warping effect , 2012, Adv. Eng. Softw..

[127]  Ali Kaveh,et al.  Optimum design of steel frames using Cuckoo Search algorithm with Lévy flights , 2013 .

[128]  W Prager,et al.  Optimality criteria in structural design. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[129]  Z. Geem Optimal cost design of water distribution networks using harmony search , 2006 .

[130]  A. Palmer,et al.  Optimal Structures Design by Dynamic Programming , 1968 .

[131]  Carsten Ebenau,et al.  An advanced evolutionary strategy with an adaptive penalty function for mixed-discrete structural optimisation , 2005, Adv. Eng. Softw..

[132]  Barry Hilary Valentine Topping,et al.  Parallel simulated annealing for structural optimization , 1999 .

[133]  Mehmet Polat Saka,et al.  Optimum design of nonlinear space trusses , 1988 .

[134]  Zong Woo Geem,et al.  Recent Advances In Harmony Search Algorithm , 2010, Recent Advances In Harmony Search Algorithm.

[135]  Johannes Moe,et al.  Automated Design of Frame Structures , 1971 .

[136]  Fuat Erbatur,et al.  Layout optimisation of trusses using simulated annealing , 2002 .

[137]  Leandro Nunes de Castro,et al.  Recent Developments In Biologically Inspired Computing , 2004 .

[138]  Shahram Pezeshk,et al.  Design of Framed Structures Using a Genetic Algorithm , 1997 .

[139]  Richard J. Balling,et al.  Multiple Optimum Size/Shape/Topology Designs for Skeletal Structures using a Genetic Algorithm , 2006 .

[140]  Mehmet Polat Saka,et al.  Optimum geometry design of roof trusses by optimality criteria method , 1991 .

[141]  S. O. Degertekin,et al.  Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm , 2009 .

[142]  W. M. Jenkins A decimal-coded evolutionary algorithm for constrained optimization , 2002 .

[143]  Daniel M. Brown,et al.  Structural Optimization by Nonlinear Programming , 1966 .

[144]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[145]  N. S. Khot,et al.  ALGORITHMS BASED ON OPTIMALITY CRITERIA TO DESIGN MINIMUM WEIGHT STRUCTURES , 1981 .

[146]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[147]  S. O. Degertekin Optimum Design of Steel Frames via Harmony Search Algorithm , 2009 .

[148]  Zong Woo Geem,et al.  Music-Inspired Harmony Search Algorithm , 2009 .

[149]  S. O. Degertekin A comparison of simulated annealing and genetic algorithm for optimum design of nonlinear steel space frames , 2007 .

[150]  Amir Hossein Gandomi,et al.  Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems , 2011, Engineering with Computers.

[151]  Asad I. Khan,et al.  Topological design of truss structures using simulated annealing , 1996 .

[152]  Chun Man Chan,et al.  How to Optimize Tall Steel Building Frameworks , 2014 .

[153]  Mehmet Polat Saka,et al.  Optimum geometry design of nonlinear braced domes using genetic algorithm , 2007 .

[154]  Ali Kaveh,et al.  SHAPE AND SIZE OPTIMIZATION OF TRUSS STRUCTURES WITH FREQUENCY CONSTRAINTS USING ENHANCED CHARGED SYSTEM SEARCH ALGORITHM , 2011 .

[155]  V. Vlasov Thin-walled elastic beams , 1961 .

[156]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[157]  J. Arora,et al.  Efficient optimal design of structures by generalized steepest descent programming , 1976 .

[158]  Mehmet Polat Saka,et al.  Harmony search based algorithm for the optimum design of grillage systems to LRFD-AISC , 2009 .

[159]  Siamak Talatahari,et al.  Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures , 2009 .

[160]  Siamak Talatahari,et al.  Optimal design of Schwedler and ribbed domes via hybrid Big Bang–Big Crunch algorithm , 2010 .

[161]  H. Adeli,et al.  Concurrent genetic algorithms for optimization of large structures , 1994 .

[162]  P. Packia Raj,et al.  Optimum Structural Design by Dynamic Programming , 1976 .

[163]  Mehmet Polat Saka,et al.  Optimum Design of Steel Frames using Stochastic Search Techniques Based on Natural Phenomena: A Review , 2007 .

[164]  Jasbir S. Arora,et al.  Alternative Formulations for Structural Optimization: An Evaluation Using Frames , 2006 .

[165]  Richard J. Balling,et al.  A filtered simulated annealing strategy for discrete optimization of 3D steel frameworks , 1992 .

[166]  Mehmet Polat Saka,et al.  Optimum shape design of cold-formed thin-walled steel sections , 2000 .

[167]  A. Kaveh,et al.  Charged system search for optimal design of frame structures , 2012, Appl. Soft Comput..

[168]  Siamak Talatahari,et al.  Optimal Design of Single Layer Domes Using Meta-Heuristic Algorithms; a Comparative Study , 2010 .

[169]  Barry Hilary Valentine Topping,et al.  Improved genetic operators for structural engineering optimization , 1998 .

[170]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[171]  Prabhat Hajela,et al.  Stochastic search in structural optimization - Genetic algorithms and simulated annealing , 1993, SOSP 1993.

[172]  Q. H. Wu,et al.  A heuristic particle swarm optimizer for optimization of pin connected structures , 2007 .

[173]  Mehmet Polat Saka,et al.  Optimum design of multistorey structures with shear walls , 1992 .

[174]  Mehmet Polat Saka Optimum design of structures , 1975 .

[175]  Shahram Pezeshk,et al.  Optimized Design of Two-Dimensional Structures Using a Genetic Algorithm , 1998 .

[176]  O. Hasançebi,et al.  Optimization of truss bridges within a specified design domain using evolution strategies , 2007 .

[177]  V. Shalu Mohan,et al.  The optimisation of space structures using evolution strategies with functional networks , 2004, Engineering with Computers.

[178]  Mehmet Polat Saka,et al.  Optimum Design of Grillage Systems Using Genetic Algorithms , 1998 .

[179]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[180]  Lance D. Chambers,et al.  Practical Handbook of Genetic Algorithms , 1995 .

[181]  Saeed Shojaee,et al.  Optimal design of skeletal structures using ant colony optimization , 2007 .

[182]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[183]  John E. Johnson,et al.  Steel Structures : Design and Behavior , 1980 .

[184]  C.J.H. Mann,et al.  Handbook of Approximation: Algorithms and Metaheuristics , 2008 .

[185]  Mehmet Polat Saka,et al.  Optimum design of steel sway frames to BS5950 using harmony search algorithm , 2009 .

[186]  S. Rajeev,et al.  Discrete Optimization of Structures Using Genetic Algorithms , 1992 .

[187]  P. Fourie,et al.  The particle swarm optimization algorithm in size and shape optimization , 2002 .

[188]  Siamak Talatahari,et al.  An improved ant colony optimization for the design of planar steel frames , 2010 .

[189]  O. Hasançebi,et al.  Discrete approaches in evolution strategies based optimum design of steel frames , 2007 .

[190]  Alireza Maheri,et al.  Optimum design of steel frames using a multiple-deme GA with improved reproduction operators , 2011 .

[191]  K I Majid,et al.  Optimum design of structures , 1974 .

[192]  M. P. Saka,et al.  OPTIMUM DESIGN OF GEOMETRICALLY NONLINEAR SPACE TRUSSES , 1991 .

[193]  Mahamed G. H. Omran,et al.  Global-best harmony search , 2008, Appl. Math. Comput..

[194]  Mehmet Polat Saka,et al.  OPTIMUM DESIGN OF SINGLE LAYER NETWORK DOMES USING HARMONY SEARCH METHOD , 2009 .

[195]  D Johnson,et al.  OPTIMUM ELASTIC DESIGN OF REDUNDANT TRUSSES , 1969 .

[196]  Mehmet Polat Saka,et al.  Optimum design of unbraced rigid frames , 1998 .

[197]  Siamak Talatahari,et al.  Hybrid Algorithm of Harmony Search, Particle Swarm and Ant Colony for Structural Design Optimization , 2009 .

[198]  O. Hasançebi,et al.  Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures , 2009 .

[199]  Shengyong Chen,et al.  Artificial Intelligence in Civil Engineering , 2012 .

[200]  Mehmet Polat Saka,et al.  Optimum design of nonlinear steel frames with semi-rigid connections using a genetic algorithm , 2001 .

[201]  Siamak Talatahari,et al.  Optimal design of skeletal structures via the charged system search algorithm , 2010 .

[202]  O. Hasançebi,et al.  Adaptive Harmony Search Algorithm for Design Code Optimization of Steel Structures , 2009 .

[203]  Marco Dorigo,et al.  Distributed Optimization by Ant Colonies , 1992 .

[204]  Mehmet Polat Saka,et al.  Genetic algorithm based optimum bracing design of non-swaying tall plane frames , 2001 .

[205]  Garret N. Vanderplaats,et al.  CONMIN: A FORTRAN program for constrained function minimization: User's manual , 1973 .

[206]  M. S. Hayalioglu,et al.  Optimum design of geometrically nonlinear elastic-plastic steel frames , 1991 .

[207]  Clarence Zener,et al.  Engineering design by geometric programming , 1971 .

[208]  Mehmet Polat Saka,et al.  Genetic algorithm based optimum design of nonlinear planar steel frames with various semi- rigid connections , 2003 .

[209]  A. Kaveh,et al.  A novel heuristic optimization method: charged system search , 2010 .

[210]  Jasbir S. Arora,et al.  A SELF‐SCALING IMPLICIT SQP METHOD FOR LARGE SCALE STRUCTURAL OPTIMIZATION , 1996 .

[211]  M. P. Saka,et al.  Optimum topology design of various geometrically nonlinear latticed domes using improved harmony search method , 2012 .

[212]  M. S. Hayalioglu,et al.  Optimum design of geometrically nonlinear elastic-plastic steel frames with tapered members , 1992 .

[213]  Rex K. Kincaid,et al.  Minimizing Distortion and Internal Forces in Truss Structures by Simulated Annealing , 1990 .

[214]  Mehmet Polat Saka,et al.  Optimum design of nonlinear elastic framed domes , 1998 .

[215]  S. O. Degertekin,et al.  Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm , 2008 .

[216]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[217]  Siamak Talatahari,et al.  Geometry and topology optimization of geodesic domes using charged system search , 2011 .

[218]  B. M. D. Silva,et al.  Comparison of some penalty function based optimization procedures for the synthesis of a planar truss , 1973 .

[219]  C. Adami,et al.  Introduction To Artificial Life , 1997, IEEE Trans. Evol. Comput..

[220]  E. Sandgren,et al.  On some experiments which delimit the utility of nonlinear programming methods for engineering design , 1982 .

[221]  H. Adeli,et al.  Augmented Lagrangian genetic algorithm for structural optimization , 1994 .

[222]  Shahram Pezeshk,et al.  Design of Nonlinear Framed Structures Using Genetic Optimization , 2000 .

[223]  Carlos A. Coello Coello,et al.  THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART , 2002 .

[224]  Richard J. Balling,et al.  Optimal Steel Frame Design by Simulated Annealing , 1991 .