THE IMPRINT OF EXOPLANET FORMATION HISTORY ON OBSERVABLE PRESENT-DAY SPECTRA OF HOT JUPITERS

The composition of a planet's atmosphere is determined by its formation, evolution, and present-day insolation. A planet's spectrum therefore may hold clues on its origins. We present a "chain" of models, linking the formation of a planet to its observable present-day spectrum. The chain links include (1) the planet's formation and migration, (2) its long-term thermodynamic evolution, (3) a variety of disk chemistry models, (4) a non-gray atmospheric model, and (5) a radiometric model to obtain simulated spectroscopic observations with James Webb Space Telescope and ARIEL. In our standard chemistry model the inner disk is depleted in refractory carbon as in the Solar System and in white dwarfs polluted by extrasolar planetesimals. Our main findings are: (1) envelope enrichment by planetesimal impacts during formation dominates the final planetary atmospheric composition of hot Jupiters. We investigate two, under this finding, prototypical formation pathways: a formation inside or outside the water iceline, called "dry" and "wet" planets, respectively. (2) Both the "dry" and "wet" planets are oxygen-rich (C/O 1 for the "dry" planet. (3) While we consistently find C/O ratios <1, they still vary significantly. To link a formation history to a specific C/O, a better understanding of the disk chemistry is thus needed.

[1]  T. Henning,et al.  Grain opacity and the bulk composition of extrasolar planets - I. Results from scaling the ISM opacity , 2014, 1403.5272.

[2]  I. Baraffe,et al.  Structure and evolution of super-Earth to super-Jupiter exoplanets - I. Heavy element enrichment in the interior , 2008, 0802.1810.

[3]  J. Fortney,et al.  New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data , 2012, 1207.2309.

[4]  D. Williams,et al.  RAYLEIGH SCATTERING BY MOLECULAR HYDROGEN , 1962 .

[5]  Benjamin Levrard,et al.  Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity , 2010, 1004.0463.

[6]  The metal-rich nature of stars with planets , 2001, astro-ph/0105216.

[7]  Y. Alibert,et al.  Gas composition of the main volatile elements in protoplanetary discs and its implication for planet formation , 2015 .

[8]  Willy Benz,et al.  Models of giant planet formation with migration and disc evolution , 2004 .

[9]  A. Morbidelli,et al.  On the width and shape of gaps in protoplanetary disks , 2006 .

[10]  David J. Wilson,et al.  Carbon to oxygen ratios in extrasolar planetesimals , 2016, 1604.03104.

[11]  Marcell Tessenyi,et al.  Probing the extreme planetary atmosphere of WASP-12b , 2012, 1205.4736.

[12]  Christoph Mordasini,et al.  A FRAMEWORK FOR CHARACTERIZING THE ATMOSPHERES OF LOW-MASS LOW-DENSITY TRANSITING PLANETS , 2013, 1306.4329.

[13]  Gautam Vasisht,et al.  THESIS: the terrestrial habitable-zone exoplanet spectroscopy infrared spacecraft , 2010, Astronomical Telescopes + Instrumentation.

[14]  W. Benz,et al.  From stellar nebula to planetesimals , 2014, 1407.7271.

[15]  A. Cameron,et al.  Hydrodynamic instability of the solar nebula in the presence of a planetary core , 1974 .

[16]  P. A. R. Ade,et al.  EChO - Exoplanet Characterisation Observatory , 2010, 1112.2728.

[17]  F. Masset,et al.  The mass-period distribution of close-in exoplanets , 2011, 1101.3545.

[18]  Y. Katherina Feng,et al.  Exoplanet Orbit Database. II. Updates to Exoplanets.org , 2014, 1409.7709.

[19]  D. SaumonT. Guillot Shock Compression of Deuterium and the Interiors of Jupiter and Saturn , 2004 .

[20]  Nikku Madhusudhan,et al.  TOWARD CHEMICAL CONSTRAINTS ON HOT JUPITER MIGRATION , 2014, 1408.3668.

[21]  E. Bergin,et al.  Tracing the ingredients for a habitable earth from interstellar space through planet formation , 2015, Proceedings of the National Academy of Sciences.

[22]  M. Mayor,et al.  An extended upper atmosphere around the extrasolar planet HD209458b , 2003, Nature.

[23]  John Asher Johnson,et al.  HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES , 2010, 1006.4161.

[24]  I. Hubeny,et al.  Possible Solutions to the Radius Anomalies of Transiting Giant Planets , 2006 .

[25]  J. Wasson,et al.  Compositions of chondrites , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[26]  Ichi Tanaka,et al.  RE-EVALUATING WASP-12b: STRONG EMISSION AT 2.315 μm, DEEPER OCCULTATIONS, AND AN ISOTHERMAL ATMOSPHERE , 2012, 1210.4836.

[27]  N. Odegard,et al.  Detection and Characterization of Cold Interstellar Dust and Polycyclic Aromatic Hydrocarbon Emission, from COBE Observations , 1996, astro-ph/9610198.

[28]  J. Hovenier,et al.  The shape and composition of interstellar silicate grains , 2006, astro-ph/0611329.

[29]  K. Batygin A primordial origin for misalignments between stellar spin axes and planetary orbits , 2012, Nature.

[30]  J. Valenti,et al.  The Planet-Metallicity Correlation , 2005 .

[31]  E. Gaidos WHAT ARE LITTLE WORLDS MADE OF? STELLAR ABUNDANCES AND THE BUILDING BLOCKS OF PLANETS , 2015, 1502.06991.

[32]  E. Opik,et al.  Physics of Meteor Flight in the Atmosphere , 1959 .

[33]  J. Pollack,et al.  Composition and radiative properties of grains in molecular clouds and accretion disks , 1994 .

[34]  Karim Shariff,et al.  Toward Planetesimals: Dense Chondrule Clumps in the Protoplanetary Nebula , 2008, 0804.3526.

[35]  Björn Benneke,et al.  The Exoplanet Characterization Observatory (EChO): performance model EclipseSim and applications , 2012, Other Conferences.

[36]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[37]  C. Hayashi,et al.  Instability of a Gaseous Envelope Surrounding a Planetary Core and Formation of Giant Planets , 1978 .

[38]  H. Gail Radial mixing in protoplanetary accretion disks - I. Stationary disc models with annealing and carbon combustion , 2001 .

[39]  Adam Burrows,et al.  Theoretical Spectra and Atmospheres of Extrasolar Giant Planets , 2003 .

[40]  A. Delsemme,et al.  Physico-chemical phenomena in comets—II: Gas adsorption in the snows of the nucleus , 1970 .

[41]  E. Bergin,et al.  THE SOLAR NEBULA ON FIRE: A SOLUTION TO THE CARBON DEFICIT IN THE INNER SOLAR SYSTEM , 2010, 1001.0818.

[42]  Willy Benz,et al.  Extrasolar planet population synthesis I: Method, formation tracks and mass-distance distribution , 2009, 0904.2524.

[43]  Hidekazu Tanaka,et al.  FINAL MASSES OF GIANT PLANETS. II. JUPITER FORMATION IN A GAS-DEPLETED DISK , 2015, 1510.06848.

[44]  K. Heng,et al.  ATMOSPHERIC RETRIEVAL ANALYSIS OF THE DIRECTLY IMAGED EXOPLANET HR 8799b , 2013, 1307.1404.

[45]  M. Marley,et al.  GASEOUS MEAN OPACITIES FOR GIANT PLANET AND ULTRACOOL DWARF ATMOSPHERES OVER A RANGE OF METALLICITIES AND TEMPERATURES , 2014, 1409.0026.

[46]  E. Guinan,et al.  Atmospheric Loss of Exoplanets Resulting from Stellar X-Ray and Extreme-Ultraviolet Heating , 2003 .

[47]  Shigeru Ida,et al.  Toward a Deterministic Model of Planetary Formation. II. The Formation and Retention of Gas Giant Planets around Stars with a Range of Metallicities , 2004, astro-ph/0408019.

[48]  S. Ida,et al.  Towards a Deterministic Model of Planetary Formation I: a Desert in the Mass and Semi Major Axis Distributions of Extra Solar Planets , 2022 .

[49]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[50]  K. Heng,et al.  On the effects of clouds and hazes in the atmospheres of hot Jupiters: semi‐analytical temperature–pressure profiles , 2011, 1107.1390.

[51]  Yasunori Hori,et al.  Gas giant formation with small cores triggered by envelope pollution by icy planetesimals , 2011, 1106.2626.

[52]  T. Guillot On the radiative equilibrium of irradiated planetary atmospheres , 2010, 1006.4702.

[53]  S. Ida,et al.  EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS , 2012, 1209.1320.

[54]  Y. Alibert,et al.  Global models of planet formation and evolution , 2014, International Journal of Astrobiology.

[55]  W. Benz,et al.  Critical core mass for enriched envelopes: the role of H2O condensation , 2015, 1502.01160.

[56]  M. Marley,et al.  On the Luminosity of Young Jupiters , 2006, astro-ph/0609739.

[57]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[58]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[59]  M. F. Astronomie,et al.  Atmospheric mass-loss and evolution of short-period exoplanets: the examples of CoRoT-7b and Kepler-10b , 2013, 1306.0973.

[60]  Vivien Parmentier,et al.  Pseudo 2D chemical model of hot-Jupiter atmospheres: application to HD 209458b and HD 189733b , 2014, 1403.0121.

[61]  T. Henning,et al.  Impacts of planet migration models on planetary populations Effects of saturation, cooling and stellar irradiation , 2014, 1402.5969.

[62]  A. P. Showman,et al.  TRANSMISSION SPECTRA OF THREE-DIMENSIONAL HOT JUPITER MODEL ATMOSPHERES , 2009, 0912.2350.

[63]  Dmitry Semenov,et al.  Chemistry in protoplanetary disks. , 2013, Chemical reviews.

[64]  P. Armitage,et al.  GIANT PLANET MIGRATION, DISK EVOLUTION, AND THE ORIGIN OF TRANSITIONAL DISKS , 2009, 0909.0004.

[65]  S. Seager,et al.  Mass-Radius Relationships for Solid Exoplanets , 2007, 0707.2895.

[66]  Martin Rubin,et al.  Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA , 2015 .

[67]  Adam Burrows,et al.  CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS? , 2009, 0902.3995.

[68]  J. W. Chamberlain Theory of planetary atmospheres , 1978 .

[69]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[70]  A. Fortier,et al.  Theoretical models of planetary system formation: mass vs. semi-major axis , 2013, 1307.4864.

[71]  W. Benz,et al.  Effects of disk irradiation on planet population synthesis , 2012 .

[72]  J. Makino,et al.  Scattering of Planetesimals by a Protoplanet: Slowing Down of Runaway Growth , 1993 .

[73]  Th. Henning,et al.  Characterizing Exoplanets in the Visible and Infrared: a Spectrometer Concept for the EChO Space Mission , 2013 .

[74]  J. Lissauer,et al.  Accretion rates of protoplanets: II. Gaussian distributions of planetesimal velocities , 1991 .

[75]  Y. Alibert,et al.  Extrasolar planet population synthesis - IV. Correlations with disk metallicity, mass, and lifetime , 2012, 1201.1036.

[76]  Willy Benz,et al.  From planetesimals to planets: volatile molecules , 2014, 1407.7282.

[77]  J. Farihi,et al.  Evidence of rocky planetesimals orbiting two Hyades stars , 2013, 1302.6992.

[78]  R. Chevalier,et al.  Explosions of infalling comets in Jupiter's atmosphere , 1994 .

[79]  Xavier Bonfils,et al.  A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b , 2015, Nature.

[80]  Heidelberg,et al.  High-resolution simulations of planetesimal formation in turbulent protoplanetary discs , 2010, Proceedings of the International Astronomical Union.

[81]  Charles F. Gammie,et al.  Layered Accretion in T Tauri Disks , 1996 .

[82]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[83]  J. Fortney,et al.  THE ROLE OF CORE MASS IN CONTROLLING EVAPORATION: THE KEPLER RADIUS DISTRIBUTION AND THE KEPLER-36 DENSITY DICHOTOMY , 2013, 1305.0269.

[84]  J. Tennyson,et al.  DETECTION OF AN ATMOSPHERE AROUND THE SUPER-EARTH 55 CANCRI E , 2015, 1511.08901.

[85]  Yann Alibert,et al.  DETERMINATION OF THE MINIMUM MASSES OF HEAVY ELEMENTS IN THE ENVELOPES OF JUPITER AND SATURN , 2008, 0812.2441.

[86]  D. Stevenson Cosmochemistry and structure of the giant planets and their satellites , 1985 .

[87]  James E. Owen,et al.  KEPLER PLANETS: A TALE OF EVAPORATION , 2013, 1303.3899.

[88]  Nikole K. Lewis,et al.  DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b , 2011, 1102.0063.

[89]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[90]  P. Lavvas,et al.  The escape of heavy atoms from the ionosphere of HD209458b. I. A photochemical–dynamical model of the thermosphere , 2012, 1210.1536.

[91]  A. Showman,et al.  3D mixing in hot Jupiters atmospheres. I. Application to the day/night cold trap in HD 209458b , 2013, 1301.4522.

[92]  H. F. Levison,et al.  MODELING THE FORMATION OF GIANT PLANET CORES. I. EVALUATING KEY PROCESSES , 2009, 0912.3144.

[93]  T. Barman,et al.  COMPOSITIONAL DIVERSITY IN THE ATMOSPHERES OF HOT NEPTUNES, WITH APPLICATION TO GJ 436b , 2013, The Astrophysical journal.

[94]  A. Johansen,et al.  THE DESTRUCTION OF INNER PLANETARY SYSTEMS DURING HIGH-ECCENTRICITY MIGRATION OF GAS GIANTS , 2015, 1502.06971.

[95]  C. Mordasini,et al.  Grain opacity and the bulk composition of extrasolar planets. II. An analytical model for the grain opacity in protoplanetary atmospheres , 2014, 1406.4127.

[96]  K. Heng,et al.  ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. II. RADIATIVE TRANSFER VIA THE TWO-STREAM APPROXIMATION , 2014, 1405.0026.

[97]  T. Guillot,et al.  SELF-CONSISTENT MODEL ATMOSPHERES AND THE COOLING OF THE SOLAR SYSTEM'S GIANT PLANETS , 2011, 1101.0606.

[98]  J. Lunine,et al.  CARBON-RICH PLANET FORMATION IN A SOLAR COMPOSITION DISK , 2014, 1402.5182.

[99]  A. Boccaletti,et al.  A Giant Planet Imaged in the Disk of the Young Star β Pictoris , 2010, Science.

[100]  Heather Knutson,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. II. A UNIFORM ANALYSIS OF NINE PLANETS AND THEIR C TO O RATIOS , 2013, 1309.6663.

[101]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[102]  C. Chyba,et al.  The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid , 1993, Nature.

[103]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[104]  J. Crovisier,et al.  The composition of cometary volatiles , 2004 .

[105]  C. Dullemond,et al.  Ices in the Edge-on Disk CRBR 2422.8-3423: Spitzer Spectroscopy and Monte Carlo Radiative Transfer Modeling , 2004, astro-ph/0411367.

[106]  Peter Bodenheimer,et al.  Calculations of the accretion and evolution of giant planets: The effects of solid cores , 1986 .

[107]  I. Kamp,et al.  Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets , 2014, Life.

[108]  Kyle L. Luther,et al.  CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST , 2015, 1511.05528.

[109]  Gilles Chabrier,et al.  A new vision of giant planet interiors: Impact of double diffusive convection , 2012, 1201.4483.

[110]  A. Boss Proximity of Jupiter-Like Planets to Low-Mass Stars , 1995, Science.

[111]  Nikku Madhusudhan,et al.  C/O RATIO AS A DIMENSION FOR CHARACTERIZING EXOPLANETARY ATMOSPHERES , 2012, 1209.2412.

[112]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[113]  Yann Alibert,et al.  From stellar nebula to planets: The refractory components , 2013, 1312.3085.

[114]  Jack J. Lissauer,et al.  Models of Jupiter's growth incorporating thermal and hydrodynamic constraints , 2008, 0810.5186.

[115]  R. Nelson,et al.  On the formation of terrestrial planets in hot-Jupiter systems , 2006, astro-ph/0610314.

[116]  R. Helled,et al.  CONVECTION AND MIXING IN GIANT PLANET EVOLUTION , 2015, 1502.03270.

[117]  C. Dominik,et al.  The thermal structure and the location of the snow line in the protosolar nebula: axisymmetric models with full 3-D radiative transfer , 2010, 1012.0727.

[118]  Katharina Lodders,et al.  Jupiter Formed with More Tar than Ice , 2004 .

[119]  Tokyo Institute of Technology,et al.  MASS-LOSS EVOLUTION OF CLOSE-IN EXOPLANETS: EVAPORATION OF HOT JUPITERS AND THE EFFECT ON POPULATION , 2014, 1401.2511.

[120]  Y. Alibert,et al.  Characterization of exoplanets from their formation - I. Models of combined planet formation and evolution , 2012, 1206.6103.

[121]  Jonathan J. Fortney,et al.  The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy , 2005, astro-ph/0509292.

[122]  F. Allard,et al.  The effect of evaporation on the evolution of close-in giant planets , 2004, astro-ph/0404101.

[123]  Jacob L. Bean,et al.  A DETECTION OF WATER IN THE TRANSMISSION SPECTRUM OF THE HOT JUPITER WASP-12b AND IMPLICATIONS FOR ITS ATMOSPHERIC COMPOSITION , 2015, 1504.05586.

[124]  D. Hunten,et al.  Mass fractionation in hydrodynamic escape , 1987 .

[125]  G. Manhès,et al.  Chemical composition of the Earth and the volatility control on planetary genetics , 2001 .

[126]  W. C. Bowman,et al.  A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b , 2010, Nature.

[127]  Peter Goldreich,et al.  Disk-Satellite Interactions , 1980 .

[128]  Enzo Pascale,et al.  The science of EChO , 2010, Proceedings of the International Astronomical Union.

[129]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[130]  C. Hayashi Structure of the Solar Nebula, Growth and Decay of Magnetic Fields and Effects of Magnetic and Turbulent Viscosities on the Nebula , 1981 .

[131]  C. B. Henderson,et al.  Drag Coefficients of Spheres in Continuum and Rarefied Flows , 1976 .

[132]  C. Mordasini Luminosity of young Jupiters revisited Massive cores make hot planets , 2013, 1306.5746.

[133]  Jeffrey S. Oishi,et al.  Rapid planetesimal formation in turbulent circumstellar disks , 2007, Nature.

[134]  William R. Ward,et al.  Three-Dimensional Interaction between a Planet and an Isothermal Gaseous Disk. I. Corotation and Lindblad Torques and Planet Migration , 2002 .

[135]  A. Watson,et al.  The dynamics of a rapidly escaping atmosphere: Applications to the evolution of Earth and Venus , 1981 .

[136]  J. Bean,et al.  DECIPHERING THE ATMOSPHERIC COMPOSITION OF WASP-12b: A COMPREHENSIVE ANALYSIS OF ITS DAYSIDE EMISSION , 2014, 1406.7567.

[137]  B. Zuckerman,et al.  EVIDENCE FOR AN ANHYDROUS CARBONACEOUS EXTRASOLAR MINOR PLANET , 2014, 1411.5036.

[138]  J. Pollack,et al.  Interactions of planetesimals with protoplanetary atmospheres , 1988 .

[139]  N. Madhusudhan,et al.  A POSSIBLE CARBON-RICH INTERIOR IN SUPER-EARTH 55 Cancri e , 2012, 1210.2720.

[140]  David P. O'Brien,et al.  THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. I. IN SITU SIMULATIONS , 2010, 1004.0971.

[141]  L. Grossman,et al.  Early chemical history of the solar system , 1974 .

[142]  J. Lunine,et al.  The presence of clathrates in comet 67P/Churyumov-Gerasimenko , 2016, Science Advances.

[143]  The composition and size distribution of the dust in the coma of Comet Hale–Bopp , 2005, astro-ph/0505603.

[144]  D. Stevenson Formation of the giant planets , 1982 .

[145]  CRITICAL PROTOPLANETARY CORE MASSES IN PROTOPLANETARY DISKS AND THE FORMATION OF SHORT-PERIOD GIANT PLANETS , 1999, astro-ph/9903310.

[146]  Jonathan J. Fortney,et al.  THE HEAVY-ELEMENT MASSES OF EXTRASOLAR GIANT PLANETS, REVEALED , 2011, 1105.0024.

[147]  C. Baruteau,et al.  A torque formula for non-isothermal type I planetary migration – I. Unsaturated horseshoe drag , 2009, 0909.4552.

[148]  J. Fortney ON THE CARBON-TO-OXYGEN RATIO MEASUREMENT IN NEARBY SUN-LIKE STARS: IMPLICATIONS FOR PLANET FORMATION AND THE DETERMINATION OF STELLAR ABUNDANCES , 2012, 1201.1504.

[149]  Ravit Helled,et al.  INTERIOR MODELS OF URANUS AND NEPTUNE , 2010, 1010.5546.

[150]  Christoph Mordasini,et al.  PLANETARY POPULATION SYNTHESIS COUPLED WITH ATMOSPHERIC ESCAPE: A STATISTICAL VIEW OF EVAPORATION , 2014, 1409.2879.

[151]  J. Beaulieu,et al.  Elemental abundances and minimum mass of heavy elements in the envelope of HD 189733b , 2009, 0909.4977.

[152]  I. V. Nemtchinov,et al.  Disintegration of large meteoroids in Earth's atmosphere: Theoretical models. , 1995 .

[153]  K. Zahnle,et al.  Airburst origin of dark shadows on Venus. , 1992, Journal of geophysical research.

[154]  D. Lin,et al.  Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets , 2004 .

[155]  Tristan Guillot,et al.  Astronomy and Astrophysics Evolution of " 51 Peg B-like " Planets , 2001 .

[156]  J. Owen,et al.  Planetary evaporation by UV and X‐ray radiation: basic hydrodynamics , 2012, 1206.2367.

[157]  Sara Seager,et al.  A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.

[158]  P. Bodenheimer,et al.  Orbital migration of the planetary companion of 51 Pegasi to its present location , 1996, Nature.

[159]  T. Henning,et al.  A laboratory study of ion-induced erosion of ice-covered carbon grains , 2015 .

[160]  Drake Deming,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2016, Nature.

[161]  O. Hubickyj,et al.  Models of the in Situ Formation of Detected Extrasolar Giant Planets , 1998 .

[162]  D. Lynden-Bell,et al.  The Evolution of viscous discs and the origin of the nebular variables. , 1974 .

[163]  Adam Burrows,et al.  SPECTRAL AND PHOTOMETRIC DIAGNOSTICS OF GIANT PLANET FORMATION SCENARIOS , 2011, 1108.5172.

[164]  D. Heggie,et al.  The effects of fly‐bys on planetary systems , 2010, 1009.4196.

[165]  T. Henning,et al.  MODEL ATMOSPHERES OF IRRADIATED EXOPLANETS: THE INFLUENCE OF STELLAR PARAMETERS, METALLICITY, AND THE C/O RATIO , 2015, 1509.07523.

[166]  D. Lin,et al.  On the tidal interaction between protoplanets and the primordial solar nebula. II: Self-consistent nonlinear interaction , 1986 .

[167]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[168]  G. Schubert,et al.  Treatise on geophysics , 2007 .

[169]  Tucson,et al.  C/O RATIOS OF STARS WITH TRANSITING HOT JUPITER EXOPLANETS, , 2014, 1403.6891.

[170]  J. P. Laboratory,et al.  Ice lines, planetesimal composition and solid surface density in the solar nebula , 2008, 0806.3788.

[171]  Norman Murray,et al.  ATMOSPHERIC ESCAPE FROM HOT JUPITERS , 2008, 0811.0006.

[172]  “Hot Jupiters” , 2006 .

[173]  A. Crida,et al.  Spin-orbit angle distribution and the origin of (mis)aligned hot Jupiters , 2014, 1405.0960.

[174]  Marko Wagner,et al.  Theory Of Planetary Atmospheres , 2016 .

[175]  Alessandro Morbidelli,et al.  Building Terrestrial Planets , 2012, 1208.4694.

[176]  Y. Alibert,et al.  Characterization of exoplanets from their formation - II. The planetary mass-radius relationship , 2012, 1206.3303.

[177]  E. Gaidos A Cosmochemical Determinism in the Formation of Earth-like Planets , 2000 .

[178]  Y. Alibert,et al.  Migration and giant planet formation , 2004, astro-ph/0403574.

[179]  J. Fortney,et al.  UNDERSTANDING THE MASS–RADIUS RELATION FOR SUB-NEPTUNES: RADIUS AS A PROXY FOR COMPOSITION , 2013, 1311.0329.