TOPOLOGICAL OPTIMIZATION OF TRUSS STRUCTURES USING SIMULATED ANNEALING

A design procedure for integrating topological decision making in the framework of structural optimization is presented. The proposed approach facilitates (i) generation and evaluation of alternate structural topologies, and (ii) development of detailed designs for promising concepts. In contrast with the ground-structure approach, the proposed method allows for an introduction of new members in an existing topology. This is done using 0-1 variables to represent topological decisions involving a choice between alternative designs. Since the topological variables are discrete in nature and the member cross-sections are assumed to be continuous, the topological optimization problem has mixed discrete-continuous variables. This problem is solved using a simulated annealing approach wherein the search for an optimum topology is simulated as a relaxation of the stochastic structural system. A probabilistic acceptance criterion is used to accept/reject candidate designs. Numerical results obtained using simulat...

[1]  Samuel L. Lipson,et al.  The complex method applied to optimal truss configuration , 1977 .

[2]  Garret N. Vanderplaats,et al.  Automated Design of Trusses for Optimum Geometry , 1972 .

[3]  Lucien A. Schmit,et al.  Minimum Weight Design of Stress Limited Trusses , 1974 .

[4]  J. B. Caldwell,et al.  Design approach and dimensional similarity in lay-out optimization of structural systems , 1991 .

[5]  William R. Spillers Iterative Structural Design , 1975 .

[6]  B. H. V. Topping,et al.  Shape Optimization of Skeletal Structures: A Review , 1983 .

[7]  A. Dhingra,et al.  Single and multiobjective structural optimization in discrete‐continuous variables using simulated annealing , 1995 .

[8]  R. Haftka,et al.  Structural shape optimization — a survey , 1986 .

[9]  Harvey J. Greenberg,et al.  Automatic design of optimal structures , 1964 .

[10]  U. Ringertz ON TOPOLOGY OPTIMIZATION OF TRUSSES , 1985 .

[11]  George I. N. Rozvany,et al.  Shape and layout optimization of structural systems and optimality criteria methods , 1992 .

[12]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[13]  Gene H. Golub,et al.  Matrix computations , 1983 .

[14]  N. Kikuchi,et al.  A homogenization method for shape and topology optimization , 1991 .

[15]  Lewis P. Felton,et al.  Optimization of Truss Geometry , 1969 .

[16]  G. Vanderplaats,et al.  Approximation method for configuration optimization of trusses , 1990 .

[17]  William R. Spillers,et al.  2 – Shape optimization of structures , 1985 .

[18]  Singiresu S Rao,et al.  Robust design of actively controlled structures using cooperative fuzzy games , 1992 .

[19]  L. Schmit,et al.  Automatic minimum weight design of elastic redundant trusses under multiple static loading conditions , 1972 .

[20]  A. Michell LVIII. The limits of economy of material in frame-structures , 1904 .

[21]  Rakesh K. Kapania,et al.  Truss Topology Optimization with Simultaneous Analysis and Design , 1994 .

[22]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[23]  U. Kirsch Synthesis of structural geometry using approximation concepts , 1982 .

[24]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[25]  Uri Kirsch,et al.  Optimal topologies of truss structures , 1989 .

[26]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[27]  Uri Kirsch,et al.  Optimal Topologies of Structures , 1989 .

[28]  G. Sved,et al.  Structural optimization under multiple loading , 1968 .