An in vivo study of bone response to implants topographically modified by laser micromachining.

[1]  L. B. Lesem,et al.  The kinoform: a new wavefront reconstruction device , 1969 .

[2]  H. Hansson,et al.  Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. , 1981, Acta orthopaedica Scandinavica.

[3]  G. Holt,et al.  Osseointegrated Titanium Implants , 1986 .

[4]  Håkan Mattsson,et al.  Surface spectroscopic characterization of titanium implant materials , 1990 .

[5]  Carina B. Johansson,et al.  On tissue reactions to metal implants , 1991 .

[6]  T. Albrektsson,et al.  An optical three-dimensional technique for topographical descriptions of surgical implants. , 1992, Journal of biomedical engineering.

[7]  T. Albrektsson,et al.  Design and surface characteristics of 13 commercially available oral implant systems. , 1993, The International journal of oral & maxillofacial implants.

[8]  A Wennerberg,et al.  Characterizing three-dimensional topography of engineering and biomaterial surfaces by confocal laser scanning and stylus techniques. , 1996, Medical engineering & physics.

[9]  A. Wennerberg On surface roughness and implant incorporation , 1996 .

[10]  T. Albrektsson,et al.  Torque and histomorphometric evaluation of c.p. titanium screws blasted with 25- and 75-microns-sized particles of Al2O3. , 1996, Journal of biomedical materials research.

[11]  H. W. Bergmann,et al.  Physical and material aspects in using visible laser pulses of nanosecond duration for ablation , 1996 .

[12]  D. Sullivan,et al.  Preliminary results of a multicenter study evaluating a chemically enhanced surface for machined commercially pure titanium implants. , 1997, The Journal of prosthetic dentistry.

[13]  T. Albrektsson,et al.  Short- and long-term animal studies with a plasma-sprayed calcium phosphate-coated implant. , 1997, Clinical oral implants research.

[14]  T. Albrektsson,et al.  A 1-year follow-up of implants of differing surface roughness placed in rabbit bone. , 1997, The International journal of oral & maxillofacial implants.

[15]  T Albrektsson,et al.  A quantitative comparison of machined commercially pure titanium and titanium-aluminum-vanadium implants in rabbit bone. , 1998, The International journal of oral & maxillofacial implants.

[16]  D. Buser,et al.  Long-lasting osseointegration of immediately loaded, bar-connected TPS screws after 12 years of function: a histologic case report of a 95-year-old patient. , 1998, The International journal of periodontics & restorative dentistry.

[17]  J. Jansen,et al.  The effect of titanium plasma-sprayed implants on trabecular bone healing in the goat. , 1998, Biomaterials.

[18]  G. López,et al.  Computer‐Controlled Laser Ablation: A Convenient and Versatile Tool for Micropatterning Biofunctional Synthetic Surfaces for Applications in Biosensing and Tissue Engineering , 1998, Biotechnology progress.

[19]  R J Lazzara,et al.  A prospective multicenter study evaluating loading of osseotite implants two months after placement: one-year results. , 1998, Journal of esthetic dentistry.

[20]  D Buser,et al.  Removal torque values of titanium implants in the maxilla of miniature pigs. , 1998, The International journal of oral & maxillofacial implants.

[21]  T Albrektsson,et al.  Suggested guidelines for the topographic evaluation of implant surfaces. , 2000, The International journal of oral & maxillofacial implants.

[22]  A. Wennerberg,et al.  The importance of surface texture for bone integration of screw shaped implants: an in vivo study of implants patterned by photolithography. , 2001, Journal of biomedical materials research.

[23]  B. Kasemo,et al.  Laser Ablation Micropatterning of Screw‐Shaped Dental Implants , 2005 .