Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
暂无分享,去创建一个
[1] E. L. Lehmann,et al. Theory of point estimation , 1950 .
[2] P. Bickel. One-Step Huber Estimates in the Linear Model , 1975 .
[3] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[4] P. Robinson,et al. The stochastic difference between econometric statistics , 1988 .
[5] P. McCullagh,et al. Generalized Linear Models , 1992 .
[6] G. Wahba. Spline models for observational data , 1990 .
[7] J. Friedman,et al. A Statistical View of Some Chemometrics Regression Tools , 1993 .
[8] B. Silverman,et al. Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .
[9] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[10] I. Johnstone,et al. Minimax risk overlp-balls forlp-error , 1994 .
[11] B. Silverman,et al. Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .
[12] L. Breiman. Better subset regression using the nonnegative garrote , 1995 .
[13] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[14] L. Breiman. Heuristics of instability and stabilization in model selection , 1996 .
[15] Young K. Truong,et al. Polynomial splines and their tensor products in extended linear modeling: 1994 Wald memorial lecture , 1997 .
[16] A. Bruce,et al. WAVESHRINK WITH FIRM SHRINKAGE , 1997 .
[17] R. Tibshirani. The lasso method for variable selection in the Cox model. , 1997, Statistics in medicine.
[18] A. Antoniadis. Wavelets in statistics: A review , 1997 .
[19] Jianqing Fan,et al. Comments on «Wavelets in statistics: A review» by A. Antoniadis , 1997 .
[20] Michael H. Neumann,et al. Exact Risk Analysis of Wavelet Regression , 1998 .
[21] Wenjiang J. Fu. Penalized Regressions: The Bridge versus the Lasso , 1998 .
[22] W. Andrew. LO, . Finance: Survey.. Journal of the American Statistical Association, , . , 2000 .
[23] Jianqing Fan,et al. Regularization of Wavelet Approximations , 2001 .
[24] Eric R. Ziegel,et al. Generalized Linear Models , 2002, Technometrics.
[25] D. Donoho,et al. Minimax risk over / p-balls for / q-error , 2022 .