Stochastic Euler-Poincaré reduction

We prove a Euler-Poincare reduction theorem for stochastic processes taking values on a Lie group, which is a generalization of the reduction argument for the deterministic case [J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, (Texts in Applied Mathematics). (Springer, 2003)]. We also show examples of its application to SO(3) and to the group of diffeomorphisms, which includes the Navier-Stokes equation on a bounded domain and the Camassa-Holm equation.

[1]  M. Émery Stochastic Calculus in Manifolds , 1989 .

[2]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[3]  Marc Arnaudon,et al.  Lagrangian Navier–Stokes diffusions on manifolds: Variational principle and stability , 2010 .

[4]  G. Kallianpur Stochastic differential equations and diffusion processes , 1981 .

[5]  J. Marsden,et al.  Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .

[6]  J. Vukadinovic On the Backwards Behavior of the Solutions of the 2D Periodic Viscous Camassa–Holm Equations , 2002 .

[7]  V. Arnold Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .

[8]  R. Temam Navier-Stokes Equations , 1977 .

[9]  Ana Bela Cruzeiro,et al.  Nonergodicity of Euler fluid dynamics on tori versus positivity of the Arnold-Ricci tensor , 2008 .

[10]  Jerrold E. Marsden,et al.  Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems , 1999 .

[11]  J. Ortega,et al.  Stochastic hamiltonian dynamical systems , 2007, math/0702787.

[12]  K. Yasue Stochastic calculus of variations , 1980 .

[13]  Darryl D. Holm,et al.  The Three Dimensional Viscous Camassa–Holm Equations, and Their Relation to the Navier–Stokes Equations and Turbulence Theory , 2001, nlin/0103039.

[14]  Navier-Stokes Equation and Diffusions on the Group of Homeomorphisms of the Torus , 2007 .

[15]  Hydrodynamics, Probability and the Geometry of the Diffeomorphisms Group , 2008, 0810.5507.

[16]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .

[17]  K. Yasue A variational principle for the Navier-Stokes equation , 1983 .

[18]  J. Zambrini Variational processes and stochastic versions of mechanics , 1986 .

[19]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[20]  国田 寛 Stochastic flows and stochastic differential equations , 1990 .

[21]  K. Chung,et al.  Introduction to Random Time and Quantum Randomness , 2003 .

[22]  Tosio Kato,et al.  Extension and Representation of Divergence-free Vector Fields on Bounded Domains , 2000 .

[23]  Steve Shkoller Geometry and Curvature of Diffeomorphism Groups withH1Metric and Mean Hydrodynamics , 1998 .