Variable Formulation Search for the Cutwidth Minimization Problem

Many optimization problems are formulated as min-max problems where the objective function consist of minimizing a maximum value. In this case, it is usual that many solutions of the problem has associated the same value of the objective function. When this happens it is difficult to determine which solution is more promising to continue the search. In this paper we propose a new variant of the Variable Neighbourhood Search methodology to tackle this kind of problems. The new variant, named Variable Formulation Search, makes use of alternative formulations of the problem to determine which solution is more promising when they have the same value of the objective function in the original formulation. We do that in shaking, local search and neighbourhood change steps of the basic Variable Neighbourhood Search. We apply the new methodology to the Cutwidth Minimization Problem. Computational results show that our proposal outperforms previous algorithms in the state of the art in terms of quality and computing time.

[1]  Yuri Kochetov,et al.  FORMULATION SPACE SEARCH APPROACH FOR THE TEACHER/CLASS TIMETABLING PROBLEM , 2008 .

[2]  Nenad Mladenovic,et al.  Variable neighborhood search for the Vertex Separation Problem , 2012, Comput. Oper. Res..

[3]  Mauricio G. C. Resende,et al.  GRASP with path relinking heuristics for the antibandwidth problem , 2011, Networks.

[4]  H. Md. Azamathulla,et al.  ANFIS-based approach for predicting sediment transport in clean sewer , 2012, Appl. Soft Comput..

[5]  Maria J. Serna,et al.  Cutwidth II: Algorithms for partial w-trees of bounded degree , 2005, J. Algorithms.

[6]  Paul G. Spirakis,et al.  Parallel Algorithms for the Minimum Cut and the Minimum Length Tree Layout Problems , 1997, Theor. Comput. Sci..

[7]  P. Hansen,et al.  Variable neighbourhood search: methods and applications , 2010, Ann. Oper. Res..

[8]  H. Md. Azamathulla,et al.  Support vector machine approach for longitudinal dispersion coefficients in natural streams , 2011, Appl. Soft Comput..

[9]  Thomas Stützle,et al.  The linear ordering problem: Instances, search space analysis and algorithms , 2004, J. Math. Model. Algorithms.

[10]  Isaac Plana,et al.  GRASP and path relinking for the matrix bandwidth minimization , 2004, Eur. J. Oper. Res..

[11]  Jesús Sánchez-Oro,et al.  Scatter search for the profile minimization problem , 2015, Networks.

[12]  Michel Gendreau,et al.  Handbook of Metaheuristics , 2010 .

[13]  Fillia Makedon,et al.  Polynomial Time Algorithms for the Min Cut Problem on Degree Restricted Trees , 1982, FOCS.

[14]  Petra Mutzel,et al.  A Polyhedral Approach to Planar Augmentation and Related Problems , 1995, ESA.

[15]  Fillia Makedon,et al.  Topological Bandwidth , 1983, CAAP.

[16]  D. Adolphson Optimal linear-ordering. , 1973 .

[17]  Nenad Mladenovic,et al.  Formulation Space Search for Circle Packing Problems , 2007, SLS.

[18]  Nenad Mladenović,et al.  Variable Neighbourhood Search , 2006 .

[19]  Juan José Pantrigo,et al.  Scatter search for the cutwidth minimization problem , 2012, Ann. Oper. Res..

[20]  Alain Hertz,et al.  Variable space search for graph coloring , 2006, Discret. Appl. Math..

[21]  John E. Beasley,et al.  A heuristic for the circle packing problem with a variety of containers , 2011, Eur. J. Oper. Res..

[22]  Rodrigo A. Botafogo Cluster analysis for hypertext systems , 1993, SIGIR.

[23]  André Raspaud,et al.  Antibandwidth and cyclic antibandwidth of meshes and hypercubes , 2009, Discret. Math..

[24]  Jordi Petit,et al.  Experiments on the minimum linear arrangement problem , 2003, ACM J. Exp. Algorithmics.

[25]  José D. P. Rolim,et al.  Optimal Cutwidths and Bisection Widths of 2- and 3-Dimensional Meshes , 1995, WG.

[26]  David R. Karger A Randomized Fully Polynomial Time Approximation Scheme for the All-Terminal Network Reliability Problem , 1999, SIAM J. Comput..

[27]  Mihalis Yannakakis,et al.  A polynomial algorithm for the MIN CUT linear arrangement of trees , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[28]  Christian Blum,et al.  Hybrid metaheuristics in combinatorial optimization: A survey , 2011, Appl. Soft Comput..

[29]  Micael Gallego,et al.  GRASP and path relinking for the max-min diversity problem , 2010, Comput. Oper. Res..

[30]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[31]  Nenad Mladenovic,et al.  Reformulation descent applied to circle packing problems , 2003, Comput. Oper. Res..

[32]  Celso C. Ribeiro,et al.  Greedy Randomized Adaptive Search Procedures , 2003, Handbook of Metaheuristics.

[33]  Pierre Hansen,et al.  Variable Neighbourhood Search , 2003 .

[34]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[35]  Juan José Pantrigo,et al.  Branch and bound for the cutwidth minimization problem , 2013, Comput. Oper. Res..

[36]  JOSEP DÍAZ,et al.  A survey of graph layout problems , 2002, CSUR.

[37]  Sergiy Butenko,et al.  Variable objective search , 2013, J. Heuristics.

[38]  Sartaj Sahni,et al.  Heuristics for backplane ordering , 1987 .

[39]  Fanica Gavril,et al.  Some NP-complete problems on graphs , 2011, CISS 2011.

[40]  L. H. Harper Optimal numberings and isoperimetric problems on graphs , 1966 .

[41]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[42]  Kazuyoshi Takagi,et al.  Minimum Cut Linear Arrangement of p-q Dags for VLSI Layout of Adder Trees , 1999 .

[43]  Guillaume Fertin,et al.  Fixed-parameter algorithms for protein similarity search under mRNA structure constraints , 2005, J. Discrete Algorithms.

[44]  Farhad Shahrokhi,et al.  On Bipartite Drawings and the Linear Arrangement Problem , 2001, SIAM J. Comput..

[45]  Andrew Lim,et al.  Ant colony optimization with hill climbing for the bandwidth minimization problem , 2006, Appl. Soft Comput..

[46]  Fillia Makedon,et al.  On minimizing width in linear layouts , 1989, Discret. Appl. Math..