Transferring the PRIMO Coarse-Grained Force Field to the Membrane Environment: Simulations of Membrane Proteins and Helix–Helix Association

An extension of the recently developed PRIMO coarse-grained force field to membrane environments, PRIMO-M, is described. The membrane environment is modeled with the heterogeneous dielectric generalized Born (HDGB) methodology that simply replaces the standard generalized Born model in PRIMO without further parametrization. The resulting model was validated by comparing amino acid insertion free energy profiles and application in molecular dynamics simulations of membrane proteins and membrane-interacting peptides. Membrane proteins with 148–661 amino acids show stable root-mean-squared-deviations (RMSD) between 2 and 4 Å for most systems. Transmembrane helical peptides maintain helical shape and exhibit tilt angles in good agreement with experimental or other simulation data. The association of two glycophorin A (GpA) helices was simulated using replica exchange molecular dynamics simulations yielding the correct dimer structure with a crossing angle in agreement with previous studies. Finally, conformational sampling of the influenza fusion peptide also generates structures in agreement with previous studies. Overall, these findings suggest that PRIMO-M can be used to study membrane bound peptides and proteins and validates the transferable nature of the PRIMO coarse-grained force field.

[1]  Gregory A. Voth,et al.  Systematic coarse-graining of a multicomponent lipid bilayer. , 2009, The journal of physical chemistry. B.

[2]  B. L. de Groot,et al.  Progress in the analysis of membrane protein structure and function , 2002, FEBS letters.

[3]  D. Tieleman,et al.  Interpretation of 2H-NMR experiments on the orientation of the transmembrane helix WALP23 by computer simulations. , 2010, Biophysical journal.

[4]  Ad Bax,et al.  The complete influenza hemagglutinin fusion domain adopts a tight helical hairpin arrangement at the lipid:water interface , 2010, Proceedings of the National Academy of Sciences.

[5]  T. Lazaridis Effective energy function for proteins in lipid membranes , 2003, Proteins.

[6]  Shayantani Mukherjee,et al.  PRIMO/PRIMONA: A coarse‐grained model for proteins and nucleic acids that preserves near‐atomistic accuracy , 2010, Proteins.

[7]  Themis Lazaridis,et al.  Membrane protein native state discrimination by implicit membrane models , 2013, J. Comput. Chem..

[8]  C. Brooks,et al.  An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. , 2003, Biophysical journal.

[9]  Klaus Schulten,et al.  Molecular dynamics simulations of proteins in lipid bilayers. , 2005, Current opinion in structural biology.

[10]  M. Feig,et al.  Conformational sampling of influenza fusion peptide in membrane bilayers as a function of termini and protonation states. , 2010, The journal of physical chemistry. B.

[11]  Jonathan W. Essex,et al.  The ELBA Force Field for Coarse-Grain Modeling of Lipid Membranes , 2011, PloS one.

[12]  D. Engelman,et al.  Effect of detergents on the association of the glycophorin a transmembrane helix. , 2003, Biophysical journal.

[13]  J. Gesell,et al.  Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy , 1999, Nature Structural Biology.

[14]  K. Schulten,et al.  Molecular Dynamics Simulations of Micelle Formation around Dimeric Glycophorin A Transmembrane Helices. , 2004, Biophysical journal.

[15]  Wonpil Im,et al.  Revisiting hydrophobic mismatch with free energy simulation studies of transmembrane helix tilt and rotation. , 2010, Biophysical journal.

[16]  Richard Wolfenden,et al.  Comparing the polarities of the amino acids: side-chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol, and neutral aqueous solution , 1988 .

[17]  Olaf S Andersen,et al.  Bilayer thickness and membrane protein function: an energetic perspective. , 2007, Annual review of biophysics and biomolecular structure.

[18]  Syma Khalid,et al.  Coarse-grained molecular dynamics simulations of membrane proteins and peptides. , 2007, Journal of structural biology.

[19]  Alexander D. MacKerell,et al.  Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations , 2004, J. Comput. Chem..

[20]  Reinhard Lipowsky,et al.  Computer simulations of bilayer membranes - self-assembly and interfacial tension. , 1998 .

[21]  K. Esselink,et al.  Computer simulations of a water/oil interface in the presence of micelles , 1990, Nature.

[22]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[23]  A. Kukol,et al.  Systematic molecular dynamics searching in a lipid bilayer: application to the glycophorin A and oncogenic ErbB-2 transmembrane domains. , 2006, Journal of molecular graphics & modelling.

[24]  R. Larson,et al.  Molecular dynamics simulations of model trans-membrane peptides in lipid bilayers: a systematic investigation of hydrophobic mismatch. , 2006, Biophysical journal.

[25]  M. Stevens,et al.  Coarse-grained simulations of lipid bilayers. , 2004, The Journal of chemical physics.

[26]  Berend Smit,et al.  Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. , 2005, Biophysical journal.

[27]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[28]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[29]  M. Sansom,et al.  Transmembrane helix-helix interactions: comparative simulations of the glycophorin a dimer. , 2006, Biochemistry.

[30]  D. Engelman,et al.  Sequence specificity in the dimerization of transmembrane alpha-helices. , 1992, Biochemistry.

[31]  Wonpil Im,et al.  Membrane assembly of simple helix homo-oligomers studied via molecular dynamics simulations. , 2007, Biophysical journal.

[32]  R. Koeppe,et al.  Influence of proline upon the folding and geometry of the WALP19 transmembrane peptide. , 2009, Biochemistry.

[33]  Michele Cascella,et al.  Topologically Based Multipolar Reconstruction of Electrostatic Interactions in Multiscale Simulations of Proteins. , 2008, Journal of chemical theory and computation.

[34]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[35]  Peter M. Kasson,et al.  Lipid Tail Protrusion in Simulations Predicts Fusogenic Activity of Influenza Fusion Peptide Mutants and Conformational Models , 2013, PLoS Comput. Biol..

[36]  Qiang Shi,et al.  Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. , 2006, The journal of physical chemistry. B.

[37]  J. Killian,et al.  Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. , 1998, Biochemistry.

[38]  Jonathan W Essex,et al.  A quantitative coarse-grain model for lipid bilayers. , 2008, The journal of physical chemistry. B.

[39]  Sergei Izvekov,et al.  Multiscale Coarse-Graining of Mixed Phospholipid/Cholesterol Bilayers. , 2006, Journal of chemical theory and computation.

[40]  Samuela Pasquali,et al.  The coarse-grained OPEP force field for non-amyloid and amyloid proteins. , 2012, The journal of physical chemistry. B.

[41]  M. Feig,et al.  A generalized Born formalism for heterogeneous dielectric environments: application to the implicit modeling of biological membranes. , 2005, The Journal of chemical physics.

[42]  Michele Cascella,et al.  Electrostatic-Consistent Coarse-Grained Potentials for Molecular Simulations of Proteins. , 2013, Journal of chemical theory and computation.

[43]  A. J. Markvoort,et al.  A detailed look at vesicle fusion. , 2006, The journal of physical chemistry. B.

[44]  Michael Feig,et al.  Molecular Dynamics Trajectory Compression with a Coarse-Grained Model , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[45]  Martin B Ulmschneider,et al.  Evaluating tilt angles of membrane-associated helices: comparison of computational and NMR techniques. , 2006, Biophysical journal.

[46]  D. Engelman,et al.  Introduction to the membrane protein reviews: the interplay of structure, dynamics, and environment in membrane protein function. , 2006, Annual review of biochemistry.

[47]  G. Heijne Membrane-protein topology , 2006, Nature Reviews Molecular Cell Biology.

[48]  D. Engelman,et al.  Membrane protein folding and oligomerization: the two-stage model. , 1990, Biochemistry.

[49]  Michele Cascella,et al.  A Nonradial Coarse-Grained Potential for Proteins Produces Naturally Stable Secondary Structure Elements. , 2010, Journal of chemical theory and computation.

[50]  Durba Sengupta,et al.  Lipid-mediated interactions tune the association of glycophorin A helix and its disruptive mutants in membranes. , 2010, Physical chemistry chemical physics : PCCP.

[51]  Lukas K. Tamm,et al.  Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin , 2001, Nature Structural Biology.

[52]  J. Killian,et al.  Sensitivity of single membrane-spanning alpha-helical peptides to hydrophobic mismatch with a lipid bilayer: effects on backbone structure, orientation, and extent of membrane incorporation. , 2001, Biochemistry.

[53]  A. Hopkins,et al.  The druggable genome , 2002, Nature Reviews Drug Discovery.

[54]  S H White,et al.  Hydrophobic interactions of peptides with membrane interfaces. , 1998, Biochimica et biophysica acta.

[55]  A. Holt,et al.  Tilt and rotation angles of a transmembrane model peptide as studied by fluorescence spectroscopy. , 2009, Biophysical journal.

[56]  M. Feig,et al.  Effect of membrane thickness on conformational sampling of phospholamban from computer simulations. , 2010, Biophysical journal.

[57]  G. Heijne,et al.  Genome‐wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms , 1998, Protein science : a publication of the Protein Society.

[58]  Michael Feig,et al.  Dynamic Heterogeneous Dielectric Generalized Born (DHDGB): An implicit membrane model with a dynamically varying bilayer thickness. , 2013, Journal of chemical theory and computation.

[59]  Ilpo Vattulainen,et al.  Coarse-grained model for phospholipid/cholesterol bilayer. , 2004, The Journal of chemical physics.

[60]  E. Tajkhorshid,et al.  Molecular basis of proton blockage in aquaporins. , 2004, Structure.

[61]  Klaus Schulten,et al.  Coarse grained protein-lipid model with application to lipoprotein particles. , 2006, The journal of physical chemistry. B.

[62]  Gregory A Voth,et al.  A multiscale coarse-graining method for biomolecular systems. , 2005, The journal of physical chemistry. B.

[63]  Y. Okamoto,et al.  Prediction of membrane protein structures by replica-exchange Monte Carlo simulations: case of two helices. , 2004, The Journal of chemical physics.

[64]  Michael Feig,et al.  Molecular dynamics simulations of large integral membrane proteins with an implicit membrane model. , 2006, The journal of physical chemistry. B.

[65]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[66]  Carol K. Hall,et al.  Molecular dynamics simulations of DPPC bilayers using "LIME", a new coarse-grained model. , 2013, The journal of physical chemistry. B.

[67]  James U Bowie,et al.  A simple method for modeling transmembrane helix oligomers. , 2003, Journal of molecular biology.

[68]  Joan-Emma Shea,et al.  Self-assembly of peptides into a β-barrel motif , 2004 .

[69]  Peter J Bond,et al.  Insertion and assembly of membrane proteins via simulation. , 2006, Journal of the American Chemical Society.

[70]  Daniel Borgis,et al.  A coarse-grained protein-protein potential derived from an all-atom force field. , 2007, The journal of physical chemistry. B.

[71]  Michael L. Klein,et al.  Simulations of Phospholipids Using a Coarse Grain Model , 2001 .

[72]  A. Ulrich,et al.  Orientation and dynamics of peptides in membranes calculated from 2H-NMR data. , 2009, Biophysical journal.

[73]  D. Engelman,et al.  Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations. , 2000, Journal of molecular biology.

[74]  T. Lazaridis,et al.  Configuration of influenza hemagglutinin fusion peptide monomers and oligomers in membranes. , 2007, Biochimica et biophysica acta.

[75]  A. Liwo,et al.  Ab initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Erik Strandberg,et al.  Tilt angles of transmembrane model peptides in oriented and non-oriented lipid bilayers as determined by 2H solid-state NMR. , 2004, Biophysical journal.

[77]  M. Feig,et al.  PRIMO: A Transferable Coarse-grained Force Field for Proteins. , 2013, Journal of chemical theory and computation.

[78]  Yun-Dong Wu,et al.  Parameterization of PACE Force Field for Membrane Environment and Simulation of Helical Peptides and Helix-Helix Association. , 2012, Journal of chemical theory and computation.

[79]  E. Lindahl,et al.  Membrane proteins: molecular dynamics simulations. , 2008, Current opinion in structural biology.

[80]  Paj Peter Hilbers,et al.  Lipid-based mechanisms for vesicle fission. , 2007, The journal of physical chemistry. B.

[81]  R. Koeppe,et al.  Charged or Aromatic Anchor Residue Dependence of Transmembrane Peptide Tilt* , 2010, The Journal of Biological Chemistry.

[82]  M. Deserno,et al.  Systematic implicit solvent coarse-graining of bilayer membranes: lipid and phase transferability of the force field , 2010, New journal of physics.

[83]  Michael Feig,et al.  MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology. , 2004, Journal of molecular graphics & modelling.

[84]  Velin Z. Spassov,et al.  Introducing an Implicit Membrane in Generalized Born/Solvent Accessibility Continuum Solvent Models , 2002 .

[85]  W F Drew Bennett,et al.  Distribution of amino acids in a lipid bilayer from computer simulations. , 2008, Biophysical journal.

[86]  Philip W Fowler,et al.  Helix-helix interactions in membrane proteins: coarse-grained simulations of glycophorin a helix dimerization. , 2008, Biochemistry.

[87]  Jakob P Ulmschneider,et al.  A generalized born implicit-membrane representation compared to experimental insertion free energies. , 2007, Biophysical journal.

[88]  Berend Smit,et al.  Molecular simulations of lipid-mediated protein-protein interactions. , 2008, Biophysical journal.

[89]  K. Schulten,et al.  Computational studies of membrane channels. , 2004, Structure.

[90]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[91]  Paul A. Wiggins,et al.  Emerging roles for lipids in shaping membrane-protein function , 2009, Nature.

[92]  Gregory A Voth,et al.  Peptide folding using multiscale coarse-grained models. , 2008, The journal of physical chemistry. B.

[93]  M. Sansom,et al.  Molecular dynamics simulations of the dimerization of transmembrane alpha-helices. , 2010, Accounts of chemical research.

[94]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[95]  Klaus Schulten,et al.  Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum. , 2006, Biophysical journal.

[96]  S. O. Smith,et al.  Structure of the transmembrane dimer interface of glycophorin A in membrane bilayers. , 2001, Biochemistry.

[97]  Michael L Klein,et al.  Probing Membrane Insertion Activity of Antimicrobial Polymers via Coarse-grain Molecular Dynamics. , 2006, Journal of chemical theory and computation.

[98]  S. Höfinger,et al.  Theoretical mimicry of biomembranes , 2009, FEBS letters.

[99]  A. Pohorille,et al.  Insights into the recognition and association of transmembrane α-helices. The free energy of α-helix dimerization in glycophorin A , 2005 .

[100]  Roman G. Efremov,et al.  Association of transmembrane helices: what determines assembling of a dimer? , 2006, J. Comput. Aided Mol. Des..

[101]  G. Heijne,et al.  Recognition of transmembrane helices by the endoplasmic reticulum translocon , 2005, Nature.

[102]  James H. Prestegard,et al.  A Transmembrane Helix Dimer: Structure and Implications , 1997, Science.