On Bounded Set Theory

We consider some Bounded Set Theories (BST), which are analogues to Bounded Arithmetic. Corresponding provably-recursive operations over sets are characterized in terms of explicit definability and PTIME- or LOGSPACE-computability. We also present some conservativity results and describe a relation between BST, possibly with Anti-Foundation Axiom, and a Logic of Inductive Definitions (LID) and Finite Model Theory.

[1]  Alexei Lisitsa,et al.  Delta-Languages for Sets and sub-PTIME Graphs Transformers , 1995, ICDT.

[2]  Gerhard Max Jäger,et al.  Theories for admissible sets : a unifying approach to proof theory , 1986 .

[3]  Vladimir Yu. Sazonov,et al.  Hereditarily-Finite Sets, Data Bases and Polynomial-Time Computability , 1993, Theor. Comput. Sci..

[4]  Mikhail Gilula The set model for database and information systems , 1994 .

[5]  Vladimir Yu. Sazonov,et al.  A Logical Approach to the Problem "P=NP?" , 1980, MFCS.

[6]  P. H. Lindsay Human Information Processing , 1977 .

[7]  Alexei Lisitsa,et al.  Delta-Languages for Sets and LOGSPACE Computable Graph Transformers , 1997, Theor. Comput. Sci..

[8]  R. Jensen,et al.  The fine structure of the constructible hierarchy , 1972 .

[9]  Samuel R. Buss A conservation result concerning bounded theories and the collection axiom , 1987 .

[10]  Akiko Kino,et al.  Intuitionism and Proof Theory , 1970 .

[11]  G. M. Clemence,et al.  Blow up of smooth solutions to the barotropic compressible magnetohydrodynamic equations with finite mass and energy , 2008, 0811.4359.

[12]  Moshe Y. Vardi The complexity of relational query languages (Extended Abstract) , 1982, STOC '82.

[13]  Vladimir Yu. Sazonov,et al.  Bounded Set Theory and Polynominal Computability , 1987, FCT.

[14]  Neil Immerman,et al.  Languages that Capture Complexity Classes , 1987, SIAM J. Comput..

[15]  A. Troelstra,et al.  Constructivism in Mathematics: An Introduction , 1988 .

[16]  Elias Dahlhaus,et al.  Is SETL a Suitable Language for Parallel Programming - A Theoretical Approach , 1987, CSL.

[17]  Vladimir Yu. Sazonov On Existence of Complete Predicate Calculus in Metamathematics without Exponentiation , 1981, MFCS.

[18]  Yuri Leonidovich Ershov,et al.  Semantic Programming , 1986, IFIP Congress.

[19]  Patrick Suppes,et al.  Logic, Methodology and Philosophy of Science , 1963 .

[20]  Saharon Shelah,et al.  Fixed-Point Extensions of First-Order Logic , 1985, FOCS.

[21]  Yiannis N. Moschovakis,et al.  Elementary induction on abstract structures , 1974 .

[22]  Alexei P. Stolboushkin,et al.  On the expressive power of program schemes with sets , 1990, Proceedings of the 5th Jerusalem Conference on Information Technology, 1990. 'Next Decade in Information Technology'.

[23]  Peter Aczel,et al.  Non-well-founded sets , 1988, CSLI lecture notes series.

[24]  Varol Akman Book Review -- Jon Barwise and Lawrence Moss, Vicious Circles: On the Mathematics of Non-Wellfounded Phenomena , 1997 .

[25]  Vladimir Yu. Sazonov Polynomial Computability and Recursivity in Finite Domains , 1980, J. Inf. Process. Cybern..

[26]  Yehoshua Bar-Hillel,et al.  The Intrinsic Computational Difficulty of Functions , 1969 .

[27]  Neil Immerman,et al.  Descriptive and Computational Complexity , 1989, FCT.

[28]  B. Dahn Admissible sets and structures , 1978 .

[29]  H. Keisler,et al.  Handbook of mathematical logic , 1977 .

[30]  S. Feferman Formal Theories for Transfinite Iterations of Generalized Inductive Definitions and Some Subsystems of Analysis , 1970 .

[31]  A. Troelstra Constructivism in mathematics , 1988 .

[32]  Lawrence S. Moss,et al.  Vicious circles - on the mathematics of non-wellfounded phenomena , 1996, CSLI lecture notes series.

[33]  Yuri Gurevich,et al.  Toward logic tailored for computational complexity , 1984 .

[34]  Vladimir Yu. Sazonov,et al.  A Bounded Set Theory with Anti-Foundation Axiom and Inductive Definability , 1994, CSL.

[35]  Jeff B. Paris,et al.  Some conservation results for fragments of arithmetic , 1981 .

[36]  Johann A. Makowsky,et al.  The Choice of Programming Primitives for SETL-Like Programming Languages , 1986, ESOP.

[37]  Neil Immerman,et al.  Relational Queries Computable in Polynomial Time , 1986, Inf. Control..

[38]  Vladimir Yu. Sazonov,et al.  On Feasible Numbers , 1994, LCC.

[39]  Rohit Parikh,et al.  Existence and feasibility in arithmetic , 1971, Journal of Symbolic Logic.

[40]  R. O. Gandy,et al.  Set-theoretic functions for elementary syntax , 1974 .

[41]  Tim Fernando,et al.  A Primitive Recursive Set Theory and AFA: On the Logical Complexity of the Largest Bisimulation , 1991, CSL.

[42]  Yuri Gurevich,et al.  Algebras of feasible functions , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[43]  V. Sazonov,et al.  An Equivalence between Polynomial Constructivity of Markov’s Principle and the Equality P=NP , 1990 .