Formal Nickelate(-I) Complexes Supported by Group 13 Ions.
暂无分享,去创建一个
L. Gagliardi | J. Xie | E. Bill | V. Young | Ryan C Cammarota | M. Vollmer | Connie C. Lu | Jing Xie | Connie C. Lu
[1] Michael T. Green,et al. Nitrogen Fixation via a Terminal Fe(IV) Nitride. , 2017, Journal of the American Chemical Society.
[2] Joshua S. Figueroa,et al. Terminal Iron Carbyne Complexes Derived from Arrested CO2 Reductive Disproportionation. , 2017, Angewandte Chemie.
[3] M. Nascimento,et al. Are One-Electron Bonds Any Different from Standard Two-Electron Covalent Bonds? , 2017, Accounts of chemical research.
[4] Connie C. Lu,et al. Leveraging molecular metal–support interactions for H2 and N2 activation , 2017 .
[5] M. Vinaixa,et al. Positional Enrichment by Proton Analysis (PEPA): A One‐Dimensional 1H‐NMR Approach for 13C Stable Isotope Tracer Studies in Metabolomics , 2017, Angewandte Chemie.
[6] J. Berry. Two-Center/Three-Electron Sigma Half-Bonds in Main Group and Transition Metal Chemistry. , 2016, Accounts of chemical research.
[7] Reed J. Eisenhart,et al. Configuring bonds between first-row transition metals. , 2015, Accounts of chemical research.
[8] Connie C. Lu,et al. Tuning Nickel with Lewis Acidic Group 13 Metalloligands for Catalytic Olefin Hydrogenation. , 2015, Journal of the American Chemical Society.
[9] D. Bourissou,et al. A Phosphine-Coordinated Boron-Centered Gomberg-Type Radical. , 2015, Angewandte Chemie.
[10] S. DeBeer,et al. Electronic Structure of Ni₂E₂ Complexes (E = S, Se, Te) and a Global Analysis of M₂E₂ Compounds: A Case for Quantized E₂(n-) Oxidation Levels with n = 2, 3, or 4. , 2015, Journal of the American Chemical Society.
[11] P. Jerabek,et al. Isolation of neutral mononuclear copper complexes stabilized by two cyclic (alkyl)(amino)carbenes. , 2014, Journal of the American Chemical Society.
[12] S. Aldridge,et al. Stable GaX2, InX2 and TlX2 radicals. , 2014, Nature chemistry.
[13] L. Gagliardi,et al. Dinitrogen Activation at Iron and Cobalt Metallalumatranes , 2013 .
[14] J. Peters,et al. A polar copper-boron one-electron σ-bond. , 2013, Journal of the American Chemical Society.
[15] R. Crabtree,et al. Redox-active ligands in catalysis. , 2013, Chemical Society reviews.
[16] Joshua S. Figueroa,et al. Zwitterionic stabilization of a reactive cobalt tris-isocyanide monoanion by cation coordination. , 2012, Angewandte Chemie.
[17] E. Walter,et al. Dinuclear metalloradicals featuring unsupported metal-metal bonds. , 2012, Angewandte Chemie.
[18] L. Gagliardi,et al. Metal-alane adducts with zero-valent nickel, cobalt, and iron. , 2011, Journal of the American Chemical Society.
[19] S. Grimme,et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.
[20] Joshua S. Figueroa,et al. Isocyano analogues of [Co(CO)(4)](n): a tetraisocyanide of cobalt isolated in three states of charge. , 2010, Journal of the American Chemical Society.
[21] J. K. Hurst,et al. Characterization of intermediary redox states of the water oxidation catalyst, [Ru(bpy)(2)(OH(2))](2)O(4+). , 2009, Inorganic chemistry.
[22] Beatriz Cordero,et al. Covalent radii revisited. , 2008, Dalton transactions.
[23] D. Truhlar,et al. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .
[24] E. Fujita,et al. Generation of a RuII-semiquinone-anilino-radical complex through the deprotonation of a RuIII-semiquinone-anilido complex. , 2007, Angewandte Chemie.
[25] F. Cotton,et al. A fractional bond order of 1/2 in Pd(2)(5+)--formamidinate species; the value of very high-field EPR spectra. , 2007, Journal of the American Chemical Society.
[26] D. Truhlar,et al. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.
[27] Hongjun Fan,et al. A Co2N2 diamond-core resting state of cobalt(I): a three-coordinate CoI synthon invoking an unusual pincer-type rearrangement. , 2006, Angewandte Chemie.
[28] J. Ellis. Adventures with substances containing metals in negative oxidation states. , 2006, Inorganic chemistry.
[29] M. Nakamoto,et al. Stable mononuclear radical anions of heavier group 13 elements: [(tBu2MeSi)3E.-].[K+(2.2.2-Cryptand)] (E = Al, Ga). , 2005, Journal of the American Chemical Society.
[30] J. Ellis. Metal Carbonyl Anions: from [Fe(CO)4]2- to [Hf(CO)6]2- and Beyond† , 2003 .
[31] P. Power. Persistent and stable radicals of the heavier main group elements and related species. , 2003, Chemical reviews.
[32] H. Grützmacher,et al. Bindungen mit ungerader Elektronenzahl und Biradikale in der Chemie der Hauptgruppenelemente , 2002 .
[33] H. Grützmacher,et al. Odd-electron bonds and biradicals in main group element chemistry. , 2002, Angewandte Chemie.
[34] D. K. Maity. Sigma Bonded Radical Cation Complexes: A Theoretical Study , 2002 .
[35] F. Gabbaï,et al. An Intramolecular Boron−Boron One-Electron σ-Bond , 2000 .
[36] Eckhard Bill,et al. Aerobic Oxidation of Primary Alcohols (Including Methanol) by Copper(II)− and Zinc(II)−Phenoxyl Radical Catalysts , 1999 .
[37] K. Hodgson,et al. Catalytic galactose oxidase models: biomimetic Cu(II)-phenoxyl-radical reactivity. , 1998, Science.
[38] Holger Schwenk,et al. Tris(tri‐tert‐butylsilyl)digallanyl (tBu3Si)3Ga2: A New Type of Compound for a Heavy Group 13 Element , 1997 .
[39] Holger Schwenk,et al. Tris(tri-tert-butylsilyl)digallanyl (tBu3Si)3Ga2 - ein neuer Verbindungstyp eines schweren Borgruppenelements†‡ , 1997 .
[40] K. Burke,et al. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .
[41] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[42] Xiaoming He,et al. Reduktion eines Digallans zu einem Radikalanion mit Ga‐Ga‐Mehrfachbindungscharakter , 1993 .
[43] P. Power,et al. Reduction of a Tetraaryldigallane to Afford a Radical Anion with GaGa Multiple Bonding Character , 1993 .
[44] C. Krüger,et al. Eine Al‐Al‐Einelektronen‐π‐Bindung , 1993 .
[45] K. Hildenbrand,et al. An Al?Al One-Electronp Bond , 1993 .
[46] T. Clark. Odd-electron .sigma. bonds , 1988 .
[47] P. Breeze,et al. CHARGED CARBONYLS IN MATRICES. INFRARED STRUCTURAL CHARACTERIZATION OF TRICARBONYLNICKEL(1-), PENTACARBONYLCHROMIUM(1-), AND TETRACARBONYLIRON(1-) , 1982 .
[48] C. Krüger,et al. Alkalimetall-Übergangsmetall-π-Komplexe† , 1980 .
[49] C. Krüger,et al. Alkali Metal‐Transition Metal π‐Complexes , 1980 .
[50] B. Roos,et al. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .
[51] K. Jonas. Dilithium‐Nickel‐Olefin‐Komplexe. Neuartige Bimetallkomplexe aus einem Übergangsmetall und einem Hauptgruppenmetall , 1975 .
[52] K. Jonas. Dilithium‐Nickel‐Olefin Complexes. Novel Bimetal Complexes Containing a Transition Metal and a Main Group Metal , 1975 .
[53] J. Collman. Disodium tetracarbonylferrate, a transition metal analog of a Grignard reagent , 1975 .
[54] R. Press,et al. The formation of negative ions by positive-ion impact on surfaces , 1938 .
[55] P. Power,et al. Reduction of a Tetraaryldialane to Generate Al-Al π-Bonding , 1993 .
[56] B. P. Roberts,et al. An E.S.R. study of the gallane radical anion , 1984 .
[57] B. P. Roberts,et al. E.s.r. spectra and reactivity of alane radical anions in solution , 1981 .
[58] K. Jonas. Alkali Metal-Transition Metal π-Complexes , 1981 .
[59] J. Burdett. Production of carbonyl anions by the vacuum ultraviolet photolysis of matrix isolated metal carbonyls , 1973 .