Formal Nickelate(-I) Complexes Supported by Group 13 Ions.

Formal nickelate(-I) complexes bearing Group 13 metalloligands (M=Al and Ga) were isolated. These 17 e- complexes were synthesized by one-electron reduction of the corresponding Ni0 →MIII precursors, and were investigated by single-crystal X-ray diffraction, EPR spectroscopy, and quantum chemical calculations. Collectively, the experimental and computational data support: 1) the strengthening of the Ni-M bond upon one-electron reduction, and 2) the delocalization of the unpaired spin across the Ni and M atoms. An intriguing electronic configuration is revealed where three valence electrons occupy two σ-type bonding interactions: Ni(3dz2 )2 →M and σ-(Ni-M)1 . The latter is an unusual Ni-M σ-bonding molecular orbital that comprises primarily the Ni 4pz and M npz /ns atomic orbitals.

[1]  Michael T. Green,et al.  Nitrogen Fixation via a Terminal Fe(IV) Nitride. , 2017, Journal of the American Chemical Society.

[2]  Joshua S. Figueroa,et al.  Terminal Iron Carbyne Complexes Derived from Arrested CO2 Reductive Disproportionation. , 2017, Angewandte Chemie.

[3]  M. Nascimento,et al.  Are One-Electron Bonds Any Different from Standard Two-Electron Covalent Bonds? , 2017, Accounts of chemical research.

[4]  Connie C. Lu,et al.  Leveraging molecular metal–support interactions for H2 and N2 activation , 2017 .

[5]  M. Vinaixa,et al.  Positional Enrichment by Proton Analysis (PEPA): A One‐Dimensional 1H‐NMR Approach for 13C Stable Isotope Tracer Studies in Metabolomics , 2017, Angewandte Chemie.

[6]  J. Berry Two-Center/Three-Electron Sigma Half-Bonds in Main Group and Transition Metal Chemistry. , 2016, Accounts of chemical research.

[7]  Reed J. Eisenhart,et al.  Configuring bonds between first-row transition metals. , 2015, Accounts of chemical research.

[8]  Connie C. Lu,et al.  Tuning Nickel with Lewis Acidic Group 13 Metalloligands for Catalytic Olefin Hydrogenation. , 2015, Journal of the American Chemical Society.

[9]  D. Bourissou,et al.  A Phosphine-Coordinated Boron-Centered Gomberg-Type Radical. , 2015, Angewandte Chemie.

[10]  S. DeBeer,et al.  Electronic Structure of Ni₂E₂ Complexes (E = S, Se, Te) and a Global Analysis of M₂E₂ Compounds: A Case for Quantized E₂(n-) Oxidation Levels with n = 2, 3, or 4. , 2015, Journal of the American Chemical Society.

[11]  P. Jerabek,et al.  Isolation of neutral mononuclear copper complexes stabilized by two cyclic (alkyl)(amino)carbenes. , 2014, Journal of the American Chemical Society.

[12]  S. Aldridge,et al.  Stable GaX2, InX2 and TlX2 radicals. , 2014, Nature chemistry.

[13]  L. Gagliardi,et al.  Dinitrogen Activation at Iron and Cobalt Metallalumatranes , 2013 .

[14]  J. Peters,et al.  A polar copper-boron one-electron σ-bond. , 2013, Journal of the American Chemical Society.

[15]  R. Crabtree,et al.  Redox-active ligands in catalysis. , 2013, Chemical Society reviews.

[16]  Joshua S. Figueroa,et al.  Zwitterionic stabilization of a reactive cobalt tris-isocyanide monoanion by cation coordination. , 2012, Angewandte Chemie.

[17]  E. Walter,et al.  Dinuclear metalloradicals featuring unsupported metal-metal bonds. , 2012, Angewandte Chemie.

[18]  L. Gagliardi,et al.  Metal-alane adducts with zero-valent nickel, cobalt, and iron. , 2011, Journal of the American Chemical Society.

[19]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[20]  Joshua S. Figueroa,et al.  Isocyano analogues of [Co(CO)(4)](n): a tetraisocyanide of cobalt isolated in three states of charge. , 2010, Journal of the American Chemical Society.

[21]  J. K. Hurst,et al.  Characterization of intermediary redox states of the water oxidation catalyst, [Ru(bpy)(2)(OH(2))](2)O(4+). , 2009, Inorganic chemistry.

[22]  Beatriz Cordero,et al.  Covalent radii revisited. , 2008, Dalton transactions.

[23]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[24]  E. Fujita,et al.  Generation of a RuII-semiquinone-anilino-radical complex through the deprotonation of a RuIII-semiquinone-anilido complex. , 2007, Angewandte Chemie.

[25]  F. Cotton,et al.  A fractional bond order of 1/2 in Pd(2)(5+)--formamidinate species; the value of very high-field EPR spectra. , 2007, Journal of the American Chemical Society.

[26]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[27]  Hongjun Fan,et al.  A Co2N2 diamond-core resting state of cobalt(I): a three-coordinate CoI synthon invoking an unusual pincer-type rearrangement. , 2006, Angewandte Chemie.

[28]  J. Ellis Adventures with substances containing metals in negative oxidation states. , 2006, Inorganic chemistry.

[29]  M. Nakamoto,et al.  Stable mononuclear radical anions of heavier group 13 elements: [(tBu2MeSi)3E.-].[K+(2.2.2-Cryptand)] (E = Al, Ga). , 2005, Journal of the American Chemical Society.

[30]  J. Ellis Metal Carbonyl Anions: from [Fe(CO)4]2- to [Hf(CO)6]2- and Beyond† , 2003 .

[31]  P. Power Persistent and stable radicals of the heavier main group elements and related species. , 2003, Chemical reviews.

[32]  H. Grützmacher,et al.  Bindungen mit ungerader Elektronenzahl und Biradikale in der Chemie der Hauptgruppenelemente , 2002 .

[33]  H. Grützmacher,et al.  Odd-electron bonds and biradicals in main group element chemistry. , 2002, Angewandte Chemie.

[34]  D. K. Maity Sigma Bonded Radical Cation Complexes: A Theoretical Study , 2002 .

[35]  F. Gabbaï,et al.  An Intramolecular Boron−Boron One-Electron σ-Bond , 2000 .

[36]  Eckhard Bill,et al.  Aerobic Oxidation of Primary Alcohols (Including Methanol) by Copper(II)− and Zinc(II)−Phenoxyl Radical Catalysts , 1999 .

[37]  K. Hodgson,et al.  Catalytic galactose oxidase models: biomimetic Cu(II)-phenoxyl-radical reactivity. , 1998, Science.

[38]  Holger Schwenk,et al.  Tris(tri‐tert‐butylsilyl)digallanyl (tBu3Si)3Ga2: A New Type of Compound for a Heavy Group 13 Element , 1997 .

[39]  Holger Schwenk,et al.  Tris(tri-tert-butylsilyl)digallanyl (tBu3Si)3Ga2 - ein neuer Verbindungstyp eines schweren Borgruppenelements†‡ , 1997 .

[40]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  Xiaoming He,et al.  Reduktion eines Digallans zu einem Radikalanion mit Ga‐Ga‐Mehrfachbindungscharakter , 1993 .

[43]  P. Power,et al.  Reduction of a Tetraaryldigallane to Afford a Radical Anion with GaGa Multiple Bonding Character , 1993 .

[44]  C. Krüger,et al.  Eine Al‐Al‐Einelektronen‐π‐Bindung , 1993 .

[45]  K. Hildenbrand,et al.  An Al?Al One-Electronp Bond , 1993 .

[46]  T. Clark Odd-electron .sigma. bonds , 1988 .

[47]  P. Breeze,et al.  CHARGED CARBONYLS IN MATRICES. INFRARED STRUCTURAL CHARACTERIZATION OF TRICARBONYLNICKEL(1-), PENTACARBONYLCHROMIUM(1-), AND TETRACARBONYLIRON(1-) , 1982 .

[48]  C. Krüger,et al.  Alkalimetall-Übergangsmetall-π-Komplexe† , 1980 .

[49]  C. Krüger,et al.  Alkali Metal‐Transition Metal π‐Complexes , 1980 .

[50]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[51]  K. Jonas Dilithium‐Nickel‐Olefin‐Komplexe. Neuartige Bimetallkomplexe aus einem Übergangsmetall und einem Hauptgruppenmetall , 1975 .

[52]  K. Jonas Dilithium‐Nickel‐Olefin Complexes. Novel Bimetal Complexes Containing a Transition Metal and a Main Group Metal , 1975 .

[53]  J. Collman Disodium tetracarbonylferrate, a transition metal analog of a Grignard reagent , 1975 .

[54]  R. Press,et al.  The formation of negative ions by positive-ion impact on surfaces , 1938 .

[55]  P. Power,et al.  Reduction of a Tetraaryldialane to Generate Al-Al π-Bonding , 1993 .

[56]  B. P. Roberts,et al.  An E.S.R. study of the gallane radical anion , 1984 .

[57]  B. P. Roberts,et al.  E.s.r. spectra and reactivity of alane radical anions in solution , 1981 .

[58]  K. Jonas Alkali Metal-Transition Metal π-Complexes , 1981 .

[59]  J. Burdett Production of carbonyl anions by the vacuum ultraviolet photolysis of matrix isolated metal carbonyls , 1973 .