Zonoids and Related Topics

A zonoid is a convex body in euclidean space which can be approximated, in sense of the Hausdorff metric, by finite vector sums of line segments. Several equivalent definitions are known, and zonoids appear in some surprisingly different contexts. The purpose of the present survey article is twofold. After giving some basic definitions and properties of zonotopes and zonoids, we describe the various ways in which zonoids enter the discussion of a number of seemingly unrelated topics. The stress is here on interrelations between the geometry of convex bodies and other fields. The second part treats those results and problems concerning zonoids and their generalizations which are of interest within the theory of convex bodies.

[1]  W. Blaschke Vorlesungen über Differentialgeometrie , 1912 .

[2]  Wilhelm Blaschke Kreis und Kugel , 1916 .

[3]  W. Blaschke,et al.  Über die Entwicklung der Affingeometrie. , 2022 .

[4]  H. Pollaczek-Geiringer,et al.  W. Blaschke, Vorlesungen über Differentialgeometrie I. 2. Auflage (Grundlehren der math. Wiss. in Einzeldarstellungen, Bd. I). Verlag J. Springer, Berlin 1924 , 1925 .

[5]  T. Bonnesen,et al.  Theorie der Konvexen Körper , 1934 .

[6]  Paul R. Halmos,et al.  The range of a vector measure , 1948 .

[7]  David Blackwell,et al.  The range of certain vector integrals , 1951 .

[8]  J. Wolfowitz,et al.  Elimination of Randomization in Certain Statistical Decision Procedures and Zero-Sum Two-Person Games , 1951 .

[9]  H. Hadwiger Mittelpunktspolyeder und translative Zerlegungsgleichheit , 1952 .

[10]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[11]  W. Moser,et al.  On the Number of Ordinary Lines Determined by n Points , 1958, Canadian Journal of Mathematics.

[12]  Lester E. Dubins,et al.  How to Cut a Cake Fairly , 1961 .

[13]  C. Herz A class of negative-definite functions , 1963 .

[14]  R. Schneider Zu einem Problem von Shephard über die Projektionen konvexer Körper , 1967 .

[15]  G. Chakerian Sets of constant relative width and constant relative brightness , 1967 .

[16]  N. Rickert Measures whose range is a ball , 1967 .

[17]  N. Rickert The range of a measure , 1967 .

[18]  G. C. Shephard Polytopes with Centrally Symmetric Faces , 1967, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[19]  J. Krivine,et al.  Lois stables et espaces $L^p$ , 1967 .

[20]  J. P. Lasalle,et al.  functional analysis and time Optimal Control , 1969 .

[21]  E. Bolker A class of convex bodies , 1969 .

[22]  J. Marsden,et al.  Lectures on analysis , 1969 .

[23]  Polytopes with centrally symmetric facets , 1970 .

[24]  R. Schneider On the projections of a convex polytope. , 1970 .

[25]  R. Schneider,et al.  Über eine Integralgleichung in der Theorie der konvexen Körper , 1970 .

[26]  Über die Bestimmung eines konvexen Körpers durch die Inhalte seiner Projektionen , 1970 .

[27]  E. Bolker The Zonoid Problem , 1971 .

[28]  W. Weil Über die Projektionenkörper konvexer Polytope , 1971 .

[29]  E. Alfsen Compact convex sets and boundary integrals , 1971 .

[30]  B. Grünbaum Arrangements and Spreads , 1972 .

[31]  Polytopes and Translative Equidecomposability , 1972 .

[32]  Metric inequalities and the zonoid problem , 1973 .

[33]  G. C. Shephard Combinatorial Properties of Associated Zonotopes , 1974, Canadian Journal of Mathematics.

[34]  W. Weil Über den Vektorraum der Differenzen von Stützfunktionen konvexer Körper , 1974 .

[35]  Un théorème d'unicité pour les hyperplans poissoniens , 1974 .

[36]  G. Matheron Hyperplans poissoniens et compacts de Steiner , 1974, Advances in Applied Probability.

[37]  Geoffrey C. Shephard,et al.  Space‐filling zonotopes , 1974 .

[38]  Zonoids whose polars are zonoids , 1975 .

[39]  Approximation of convex bodies by sums of line segments , 1975 .

[40]  Support functions of central convex bodies , 1975 .

[41]  T. Zaslavsky Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .

[42]  L. M. Kelly,et al.  The Geometry of Metric and Linear Spaces , 1975 .

[43]  G. Matheron Random Sets and Integral Geometry , 1976 .

[44]  Peter McMullen,et al.  SPACE TILING ZONOTOPES , 1975 .

[45]  The range of a vector measure , 1975 .

[46]  G. Burton On the sum of a zonotope and an ellipsoid , 1976 .

[47]  Robert W. Shannon A Lower Bound on the Number of Cells in Arrangements of Hyperplanes , 1976, J. Comb. Theory, Ser. A.

[48]  Characterization of the closed convex hull of the range of a vector-valued measure , 1976 .

[49]  W. Weil Kontinuierliche Linearkombination von Strecken , 1976 .

[50]  W. Weil Centrally symmetric convex bodies and distributions , 1976 .

[51]  L. E. Dor,et al.  Potentials and isometric embeddings inL1 , 1976 .

[52]  W. Weil Blaschkes Problem der lokalen Charakterisierung von Zonoiden , 1977 .

[53]  R. Schneider Rekonstruktion eines konvexen Körpers aus seinen Projektionen , 1977 .

[54]  Centrally symmetric convex sets and mixed volumes , 1977 .

[55]  Translative Zerlegungsgleichheit von Polytopen , 1977 .

[56]  A support characterization of zonotopes , 1978 .

[57]  J. Retherford Review: J. Diestel and J. J. Uhl, Jr., Vector measures , 1978 .

[58]  On multiple space subdivisions by zonotopes , 1978 .

[59]  George B. Purdy,et al.  The Directions Determined by n Points in the Plane , 1979 .

[60]  P. McMullen Transforms, Diagrams and Representations , 1979 .

[61]  W. Weil On surface area measures of convex bodies , 1980 .

[62]  Peter McMullen,et al.  Convex bodies which tile space by translation , 1980 .

[63]  W. Hildenbrand Short-Run Production Functions Based on Microdata , 1981 .

[64]  P. McMullen Convex bodies which tile space by translation: Acknowledgement of priority , 1981 .

[65]  A. Neyman Decomposition of ranges of vector measures , 1981 .

[66]  Richard P. Stanley,et al.  Two Combinatorial Applications of the Aleksandrov-Fenchel Inequalities , 1981, J. Comb. Theory, Ser. A.

[67]  Zonoide und verwandte Klassen konvexer Körper , 1982 .

[68]  Rolf Schneider,et al.  Random hyperplanes meeting a convex body , 1982 .

[69]  R. Schneider Random Polytopes Generated by Anisotropic Hyperplanes , 1982 .

[70]  Integrals of production sets with restricted substitution , 1982 .

[71]  P. McMullen,et al.  Estimating the Sizes of Convex Bodies from Projections , 1983 .

[72]  C. Thomas Extremum properties of the intersection densities of stationary poisson hyperplane processes , 1984 .