Advanced Portfolio Techniques

There exists a proliferation of different approaches to using portfolios and algorithm selection to make solving combinatorial search and optimisation problems more efficient, as surveyed in the previous chapter. In this chapter, we take a look at a detailed case study that leverages transformations between problem representations to make portfolios more effective, followed by extensions to the state of the art that make algorithm selection more robust in practice.

[1]  Andreas Bortfeldt,et al.  A tree search procedure for the container pre-marshalling problem , 2012, Eur. J. Oper. Res..

[2]  Barry O'Sullivan,et al.  Constraint Programming and Combinatorial Optimisation in Numberjack , 2010, CPAIOR.

[3]  K.V. Indukuri,et al.  Similarity Analysis of Patent Claims Using Natural Language Processing Techniques , 2007, International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007).

[4]  Carlos Ansótegui,et al.  A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms , 2009, CP.

[5]  John Thornton,et al.  Using Cost Distributions to Guide Weight Decay in Local Search for SAT , 2008, PRICAI.

[6]  Kees Jan Roodbergen,et al.  Storage yard operations in container terminals: Literature overview, trends, and research directions , 2014, Eur. J. Oper. Res..

[7]  Yuri Malitsky,et al.  Algorithm Selection and Scheduling , 2011, CP.

[8]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[9]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[10]  Olivier Roussel,et al.  XML Representation of Constraint Networks: Format XCSP 2.1 , 2009, ArXiv.

[11]  Kevin Leyton-Brown,et al.  Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection , 2010, AAAI.

[12]  Stefan Voß,et al.  Solving the pre-marshalling problem to optimality with A* and IDA* , 2017 .

[13]  Camille Roth,et al.  Natural Scales in Geographical Patterns , 2017, Scientific Reports.

[14]  Michael I. Jordan,et al.  Bayesian Nonparametric Latent Feature Models , 2011 .

[15]  Yoav Shoham,et al.  Understanding Random SAT: Beyond the Clauses-to-Variables Ratio , 2004, CP.

[16]  Stefan Voß,et al.  Operations research at container terminals: a literature update , 2007, OR Spectr..

[17]  Mutsunori Banbara,et al.  Azucar: A SAT-Based CSP Solver Using Compact Order Encoding - (Tool Presentation) , 2012, SAT.

[18]  Sigrid Knust,et al.  Loading, unloading and premarshalling of stacks in storage areas: Survey and classification , 2014, Eur. J. Oper. Res..

[19]  Yusin Lee,et al.  An optimization model for the container pre-marshalling problem , 2007, Comput. Oper. Res..

[20]  Armin Biere Lingeling, Plingeling and Treengeling Entering the SAT Competition 2013 , 2013 .

[21]  Yuri Malitsky,et al.  Instance-specific algorithm configuration , 2014, Constraints.

[22]  Yuri Malitsky,et al.  Instance-Specific Algorithm Configuration as a Method for Non-Model-Based Portfolio Generation , 2012, CPAIOR.

[23]  Kevin Leyton-Brown,et al.  SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..

[24]  H. S. Prasantha,et al.  Image Compression Using SVD , 2007, International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007).

[25]  Martin Gebser,et al.  clasp : A Conflict-Driven Answer Set Solver , 2007, LPNMR.

[26]  Statistical identification of syndromes feature and structure of disease of western medicine based on general latent structure model , 2012, Chinese Journal of Integrative Medicine.

[27]  Mason A. Porter,et al.  The Extraordinary SVD , 2011, Am. Math. Mon..

[28]  John Thornton,et al.  Additive versus Multiplicative Clause Weighting for SAT , 2004, AAAI.

[29]  Garrett P. Sonnier,et al.  A Latent Instrumental Variables Approach to Modeling Keyword Conversion in Paid Search Advertising , 2012 .

[30]  Lars Kotthoff,et al.  LLAMA: Leveraging Learning to Automatically Manage Algorithms , 2013, ArXiv.

[31]  Holger H. Hoos,et al.  Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT , 2002, CP.

[32]  Yuri Malitsky,et al.  Algorithm Portfolios Based on Cost-Sensitive Hierarchical Clustering , 2013, IJCAI.