Effect of implantation site on phagocyte/polymer interaction and fibrous capsule formation.

[1]  J. J. Grote,et al.  Biocompatibility of six elastomers in vitro. , 1988, Journal of biomedical materials research.

[2]  J. Rosen,et al.  Biomaterials in Reconstructive Surgery , 1987 .

[3]  A. Bantjes,et al.  Small diameter blood vessel prostheses from blends of polyethylene oxide and polypropylene oxide. , 1986, Biomaterials.

[4]  J. J. Grote,et al.  The biological performance of calcium phosphate ceramics in an infected implantation site: II. Biological evaluation of hydroxyapatite during short-term infection. , 1986, Journal of biomedical materials research.

[5]  C. Behling,et al.  Quantitative characterization of cells at the interface of long-term implants of selected polymers. , 1986, Journal of biomedical materials research.

[6]  J. J. Grote,et al.  Macropore tissue ingrowth: a quantitative and qualitative study on hydroxyapatite ceramic. , 1986, Biomaterials.

[7]  J. J. Grote,et al.  Hydroxyapatite Ceramic as Middle Ear Implant Material: Animal Experimental Results , 1986, The Annals of otology, rhinology & laryngology. Supplement.

[8]  C. Klein,et al.  A comparative study of different beta-whitlockite ceramics in rabbit cortical bone with regard to their biodegradation behaviour. , 1986, Biomaterials.

[9]  M. F. Smith,et al.  1984 Santa Barbara State-of-the-Art Symposium on Otosclerosis , 1986, The Annals of otology, rhinology, and laryngology.

[10]  J. J. Grote,et al.  Bioreactions at the tissue/hydroxyapatite interface. , 1985, Biomaterials.

[11]  J. Galante,et al.  Biocompatibility of Delrin 150: a creep-resistant polymer for total joint prostheses. , 1985, Journal of biomedical materials research.

[12]  F. Moatamed,et al.  The intracellular degradation of poly(ε-caprolactone) , 1985 .

[13]  G E Visscher,et al.  Biodegradation of and tissue reaction to 50:50 poly(DL-lactide-co-glycolide) microcapsules. , 1985, Journal of biomedical materials research.

[14]  J. Anderson,et al.  In vivo biocompatibility studies. V. In vivo leukocyte interactions with Biomer. , 1984, Journal of biomedical materials research.

[15]  T. N. Salthouse,et al.  Some aspects of macrophage behavior at the implant interface. , 1984, Journal of biomedical materials research.

[16]  W. Johnson,et al.  Concepts of Granulomatous Inflammation , 1984, International journal of dermatology.

[17]  S. R. Taylor,et al.  Effect of surface texture on the soft tissue response to polymer implants. , 1983, Journal of biomedical materials research.

[18]  D. Williams,et al.  Biodegradation of surgical polymers , 1982 .

[19]  G. Wilkes,et al.  Structure–property relationships of a new series of segmented polyether–polyester copolymers , 1981 .

[20]  R. White,et al.  Histopathologic observations after short-term implantation of two porous elastomers in dogs. , 1981, Biomaterials.

[21]  P. Griss,et al.  Comparative histocompatibility testing of seven calcium phosphate ceramics. , 1981, Biomaterials.

[22]  J. Papadimitriou,et al.  The locomotory behaviour of the multinu‐cleate giant cells of foreign body reactions , 1977, The Journal of pathology.

[23]  E. Cuddihy,et al.  In vivo degradation of silicone rubber poppets in prosthetic heart valves. , 1976, Journal of biomedical materials research.

[24]  A. Clark,et al.  The influence of surface chemistry on implant interface histology: a theoretical basis for implant materials selection. , 1976, Journal of biomedical materials research.

[25]  J O Galante,et al.  Failed femoral stems in total hip prostheses. A report of six cases. , 1975, The Journal of bone and joint surgery. American volume.

[26]  J D Andrade,et al.  The foreign body reaction: a chronic inflammatory response. , 1974, Journal of biomedical materials research.

[27]  J. C. Boyd,et al.  New principles governing the tissue reactivity of prosthetic materials. , 1974, Journal of Surgical Research.

[28]  I. Macnab,et al.  Ceramics in surgery , 1971 .

[29]  N K Wood,et al.  The significance of implant shape in experimental testing of biological materials: disc vs. rod. , 1970, Journal of biomedical materials research.

[30]  R. Oglesby,et al.  The behavior of biological materials at different sites of implantation. , 1968, Journal of biomedical materials research.

[31]  J. Dávila,et al.  SOME PHYSICAL FACTORS AFFECTING THE ACCEPTANCE OF SYNTHETIC MATERIALS AS TISSUE IMPLANTS * , 1968, Annals of the New York Academy of Sciences.

[32]  A. Ferguson,et al.  Tissue reaction in rabbit muscle exposed to metallic implants. , 1967, Journal of biomedical materials research.

[33]  J. Anderson,et al.  Biomaterial biocompatibility and the macrophage. , 1984, Biomaterials.

[34]  J. J. Grote Biomaterials in Otology , 1984 .

[35]  B. F. Matlaga,et al.  Ultrastructural observations of cells at the interface of a biodegradable polymer: Polyglactin 910. , 1983, Journal of biomedical materials research.

[36]  Larry L. Hench,et al.  Biomaterials : an interfacial approach , 1982 .

[37]  G. Winter,et al.  Evaluation of biomaterials , 1980 .

[38]  T. T. Daurova,et al.  The specificity of polymer degradation in the living body , 1979 .

[39]  G. Winter Tissue reactions to metallic wear and corrosion products in human patients. , 1974, Journal of biomedical materials research.

[40]  Robert Roaf,et al.  Implants in surgery , 1973 .

[41]  W. H. Lawrence,et al.  Subacute toxicity testing of biomaterials using histopathologic evaluation of rabbit muscle tissue. , 1973, Journal of biomedical materials research.

[42]  J. Calnan The use of inert plastic material in reconstructive surgery. I. A biological test for tissue acceptance. II. Tissue reactions to commonly used materials. , 1963, British journal of plastic surgery.

[43]  F. Braithwaite,et al.  Some observations on the deformity of ectopia vesic , 1962 .