Linearized Control Systems and Applications to Smooth Stabilization

For a control system $\dot{x} = f(x,u)$, the author proves that, for generic feedback laws $u$ such that $f(x,u(x))$ does not vanish, the linearized control systems around the trajectories of $\dot{x} = f(x,u(x))$ have the same strong accessibility algebra as $f$. Applications are given to the smooth stabilization problem.

[1]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[2]  H. Hermes,et al.  Nonlinear Controllability via Lie Theory , 1970 .

[3]  H. Sussmann,et al.  Controllability of nonlinear systems , 1972 .

[4]  V. Jurdjevic,et al.  Controllability and stability , 1978 .

[5]  Thomas Kailath,et al.  Linear Systems , 1980 .

[6]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[7]  H. W. Knobloch,et al.  ON LOCAL CONTROLLABILITY OF NON-LINEAR SYSTEMS , 1984 .

[8]  A. Ilchmann,et al.  Time-varying polynomial matrix systems , 1984 .

[9]  George Leitmann,et al.  Dynamical systems and microphysics : control theory and mechanics , 1984 .

[10]  Aristotle Arapostathis,et al.  Remarks on smooth feedback stabilization of nonlinear systems , 1986, 1986 American Control Conference.

[11]  M. Gromov,et al.  Partial Differential Relations , 1986 .

[12]  Eduardo D. Sontag,et al.  Finite-dimensional open-loop control generators for non-linear systems , 1988 .

[13]  Gerardo Lafferriere,et al.  Motion planning for controllable systems without drift , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[14]  H. Sussmann,et al.  Limits of highly oscillatory controls and the approximation of general paths by admissible trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[15]  Rachid Outbib,et al.  Stabilizability of the angular velocity of a rigid body revisited , 1992 .

[16]  Jean-Michel Coron,et al.  Global asymptotic stabilization for controllable systems without drift , 1992, Math. Control. Signals Syst..

[17]  Jean-Baptiste Pomet Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift , 1992 .

[18]  J. Coron,et al.  Smooth stabilizing time-varying control laws for a class of nonlinear systems. application to mobile robots , 1992 .

[19]  Jean-Michel Coron LINKS BETWEEN LOCAL CONTROLLABILITY AND LOCAL CONTINUOUS STABILIZATION , 1993 .

[20]  Eduardo Sontag,et al.  Orders of Input/Output Differential Equations and State-Space Dimensions , 1995 .

[21]  S. Bhat Controllability of Nonlinear Systems , 2022 .