Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles.

[1]  Clemens Burda,et al.  Nanoparticle mediated non-covalent drug delivery. , 2013, Advanced drug delivery reviews.

[2]  Jarno Salonen,et al.  Nanostructured Porous Silicon‐Solid Lipid Nanocomposite: Towards Enhanced Cytocompatibility and Stability, Reduced Cellular Association, and Prolonged Drug Release , 2013 .

[3]  K. Järvinen,et al.  Development of porous silicon nanocarriers for parenteral peptide delivery. , 2013, Molecular pharmaceutics.

[4]  Anne L. van de Ven,et al.  Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. , 2013, Nature nanotechnology.

[5]  F. Kratz,et al.  Finding the optimal balance: challenges of improving conventional cancer chemotherapy using suitable combinations with nano-sized drug delivery systems. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[6]  Biana Godin,et al.  Biocompatibility assessment of Si-based nano- and micro-particles. , 2012, Advanced drug delivery reviews.

[7]  H. Santos,et al.  Nanostructured porous silicon materials: potential candidates for improving drug delivery. , 2012, Nanomedicine.

[8]  Vesa-Pekka Lehto,et al.  Effect of isotonic solutions and peptide adsorption on zeta potential of porous silicon nanoparticle drug delivery formulations. , 2012, International journal of pharmaceutics.

[9]  H. Santos,et al.  Cellular interactions of surface modified nanoporous silicon particles. , 2012, Nanoscale.

[10]  Bruno Sarmento,et al.  Cell-based in vitro models for predicting drug permeability , 2012, Expert opinion on drug metabolism & toxicology.

[11]  H. Santos,et al.  The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. , 2012, Biomaterials.

[12]  S. Sahoo,et al.  Folate Decorated Dual Drug Loaded Nanoparticle: Role of Curcumin in Enhancing Therapeutic Potential of Nutlin-3a by Reversing Multidrug Resistance , 2012, PloS one.

[13]  H. Gu,et al.  Delivering hydrophilic and hydrophobic chemotherapeutics simultaneously by magnetic mesoporous silica nanoparticles to inhibit cancer cells , 2012, International journal of nanomedicine.

[14]  H. Santos,et al.  Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. , 2012, Molecular pharmaceutics.

[15]  Mauro Ferrari,et al.  Mesoporous Silicon‐PLGA Composite Microspheres for the Double Controlled Release of Biomolecules for Orthopedic Tissue Engineering , 2012 .

[16]  Mesoporous Silicon (PSi) for Sustained Peptide Delivery: Effect of PSi Microparticle Surface Chemistry on Peptide YY3-36 Release , 2012, Pharmaceutical Research.

[17]  H. Santos,et al.  Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles. , 2011, Biomaterials.

[18]  M. Brandl,et al.  Effect of the non-ionic surfactant Poloxamer 188 on passive permeability of poorly soluble drugs across Caco-2 cell monolayers. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[19]  H. Santos,et al.  ¹⁸F-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography. , 2011, Molecular Pharmaceutics.

[20]  H. Santos,et al.  Multifunctional porous silicon for therapeutic drug delivery and imaging. , 2011, Current drug discovery technologies.

[21]  Liangfang Zhang,et al.  Polymeric nanoparticles with precise ratiometric control over drug loading for combination therapy. , 2011, Molecular pharmaceutics.

[22]  V. Rotello,et al.  Beauty is skin deep: a surface monolayer perspective on nanoparticle interactions with cells and bio-macromolecules. , 2011, Small.

[23]  B. Sarmento,et al.  Facilitated nanoscale delivery of insulin across intestinal membrane models. , 2011, International journal of pharmaceutics.

[24]  H. Santos,et al.  Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. , 2011, Biomaterials.

[25]  Guojie Wang,et al.  Drug delivery systems for differential release in combination therapy , 2011, Expert opinion on drug delivery.

[26]  S. Yadav,et al.  Cellular interactions of therapeutically delivered nanoparticles , 2011, Expert opinion on drug delivery.

[27]  K. Järvinen,et al.  Nanostructured porous silicon microparticles enable sustained peptide (Melanotan II) delivery. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[28]  Robert Langer,et al.  Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy , 2010, Proceedings of the National Academy of Sciences.

[29]  W. Freeman,et al.  Sustained Release of a Monoclonal Antibody from Electrochemically Prepared Mesoporous Silicon Oxide , 2010, Advanced functional materials.

[30]  C. Prestidge,et al.  Thermal oxidation for controlling protein interactions with porous silicon. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[31]  Liangfang Zhang,et al.  Nanoparticle-assisted combination therapies for effective cancer treatment. , 2010, Therapeutic delivery.

[32]  Zongxi Li,et al.  Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. , 2010, ACS nano.

[33]  Liangfang Zhang,et al.  Combinatorial drug conjugation enables nanoparticle dual-drug delivery. , 2010, Small.

[34]  H. Santos,et al.  In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration, surface chemistry and size. , 2010, Acta biomaterialia.

[35]  Vesa-Pekka Lehto,et al.  Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. , 2010, ACS nano.

[36]  Mauro Ferrari,et al.  Sustained small interfering RNA delivery by mesoporous silicon particles. , 2010, Cancer research.

[37]  He Hui,et al.  Oxidized mesoporous silicon microparticles for improved oral delivery of poorly soluble drugs. , 2010, Molecular pharmaceutics.

[38]  Francesco Stellacci,et al.  Effect of surface properties on nanoparticle-cell interactions. , 2010, Small.

[39]  M. Wirth,et al.  Poloxamer 188 supplemented culture medium increases the vitality of Caco-2 cells after subcultivation and freeze/thaw cycles. , 2010, ALTEX.

[40]  Iseult Lynch,et al.  Protein-nanoparticle interactions: What does the cell see? , 2009, Nature nanotechnology.

[41]  Vesa-Pekka Lehto,et al.  In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[42]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[43]  Lasse Murtomäki,et al.  Cellular automata model for drug release from binary matrix and reservoir polymeric devices. , 2009, Biomaterials.

[44]  Michael J Sailor,et al.  Biodegradable luminescent porous silicon nanoparticles for in vivo applications. , 2009, Nature materials.

[45]  W. Freeman,et al.  Porous silicon in drug delivery devices and materials. , 2008, Advanced drug delivery reviews.

[46]  M. Morris,et al.  Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. , 2008, Advanced drug delivery reviews.

[47]  Mauro Ferrari,et al.  Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. , 2008, Nature nanotechnology.

[48]  M. Sailor,et al.  Digital microfluidics and delivery of molecular payloads with magnetic porous silicon chaperones. , 2008, Dalton transactions.

[49]  Omid C Farokhzad,et al.  Co‐Delivery of Hydrophobic and Hydrophilic Drugs from Nanoparticle–Aptamer Bioconjugates , 2007, ChemMedChem.

[50]  U. Schaefer,et al.  Dexamethasone-loaded nanoparticle-coated microparticles: correlation between in vitro drug release and drug transport across Caco-2 cell monolayers. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[51]  A. Almeida,et al.  Solid lipid nanoparticles as a drug delivery system for peptides and proteins. , 2007, Advanced drug delivery reviews.

[52]  J. Salonen,et al.  Enhanced in vitro permeation of furosemide loaded into thermally carbonized mesoporous silicon (TCPSi) microparticles. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[53]  Ho Sup Yoon,et al.  Co-delivery of drugs and DNA from cationic core–shell nanoparticles self-assembled from a biodegradable copolymer , 2006, Nature materials.

[54]  Y. Kawashima,et al.  Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[55]  V. Lehto,et al.  Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[56]  H. Gao,et al.  Synthesis of a biodegradable tadpole-shaped polymer via the coupling reaction of polylactide onto mono(6-(2-aminoethyl)amino-6-deoxy)-beta-cyclodextrin and its properties as the new carrier of protein delivery system. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[57]  N. C. Price,et al.  How to study proteins by circular dichroism. , 2005, Biochimica et biophysica acta.

[58]  Shiladitya Sengupta,et al.  Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system , 2005, Nature.

[59]  V. Rives,et al.  Mg,Al layered double hydroxides with intercalated indomethacin: synthesis, characterization, and pharmacological study. , 2004, Journal of pharmaceutical sciences.

[60]  P. Mannon,et al.  Primary structures of PYY, [Pro(34)]PYY, and PYY-(3-36) confer different conformations and receptor selectivity. , 2000, American journal of physiology. Gastrointestinal and liver physiology.

[61]  P Couvreur,et al.  Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. , 2000, Biomaterials.

[62]  G L Amidon,et al.  Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. , 2000, Journal of pharmaceutical sciences.

[63]  A. Price,et al.  Mitochondrial damage: a possible mechanism of the “topical” phase of NSAID induced injury to the rat intestine , 1997, Gut.

[64]  K. Luthman,et al.  Caco-2 monolayers in experimental and theoretical predictions of drug transport , 1996 .

[65]  G. Amidon,et al.  HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: in vitro-in vivo correlation with permeability data from rats and humans. , 1996, Journal of pharmaceutical sciences.

[66]  R. Conradi,et al.  The relationship between peptide structure and transport across epithelial cell monolayers , 1992 .

[67]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .