Hearing the Shape of the Ising Model with a Programmable Superconducting-Flux Annealer
暂无分享,去创建一个
Aidan Roy | Simone Severini | Klas Markström | Sergio Boixo | Paul A. Warburton | Walter Vinci | Federico M. Spedalieri
[1] Dong Zhou,et al. Two-particle quantum walks applied to the graph isomorphism problem , 2010, 1002.3003.
[2] Daniel A. Lidar,et al. Experimental signature of programmable quantum annealing , 2012, Nature Communications.
[3] Klas Markström,et al. The bivariate Ising polynomial of a graph , 2009, Discret. Appl. Math..
[4] H. Whitney. The Coloring of Graphs. , 1931, Proceedings of the National Academy of Sciences of the United States of America.
[5] C. Fortuin,et al. On the random-cluster model: I. Introduction and relation to other models , 1972 .
[6] Rosenbaum,et al. Quantum annealing of a disordered magnet , 1999, Science.
[7] U. Vazirani,et al. How "Quantum" is the D-Wave Machine? , 2014, 1401.7087.
[8] E. Lieb,et al. Two Soluble Models of an Antiferromagnetic Chain , 1961 .
[9] A. Young,et al. Solving the Graph Isomorphism Problem with a Quantum Annealer , 2012, 1207.1712.
[10] Gordon F. Royle,et al. Algebraic Graph Theory , 2001, Graduate texts in mathematics.
[11] Seth Lloyd,et al. Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[12] M. Lavagna. Quantum Phase Transitions , 2001, cond-mat/0102119.
[13] J. Smolin,et al. Classical signature of quantum annealing , 2013, Front. Phys..
[14] Jacobo Torán,et al. Isomorphism Testing: Perspective and Open Problems , 2005, Bull. EATCS.
[15] R. Car,et al. Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.
[16] B. L. Waerden. Die lange Reichweite der regelmäßigen Atomanordnung in Mischkristallen , 1941 .
[17] B. Cipra. An introduction to the Ising model , 1987 .
[18] M. W. Johnson,et al. Quantum annealing with manufactured spins , 2011, Nature.
[19] Simone Severini,et al. A Matrix Representation of Graphs and its Spectrum as a Graph Invariant , 2006, Electron. J. Comb..
[20] E. Ising. Beitrag zur Theorie des Ferromagnetismus , 1925 .
[21] Claudio Perez Tamargo. Can one hear the shape of a drum , 2008 .
[22] Jaroslav Nesetril,et al. Distinguishing graphs by their left and right homomorphism profiles , 2011, Eur. J. Comb..
[23] Bikas K. Chakrabarti,et al. Transverse Field Spin Models: From Statistical Physics to Quantum Information , 2010, 1012.0653.
[24] B. McKay,et al. Constructing cospectral graphs , 1982 .
[25] J. Doll,et al. Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.
[26] Marc Noy,et al. On Graphs Determined by Their Tutte Polynomials , 2004, Graphs Comb..
[27] B. Gutkin,et al. Can one hear the shape of a graph , 2001, nlin/0105020.
[28] Daniel A. Lidar,et al. Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.
[29] W. T. Tutte,et al. A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.
[30] Leslie Ann Goldberg,et al. The computational complexity of two‐state spin systems , 2003, Random Struct. Algorithms.
[31] H. Nishimori,et al. Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.
[32] Tomer Kotek,et al. Complexity of Ising Polynomials , 2011, Combinatorics, Probability and Computing.
[33] M. Sipser,et al. Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.
[34] Daniel A. Lidar,et al. Quantum adiabatic Markovian master equations , 2012, 1206.4197.
[35] Chris D. Godsil,et al. Symmetric squares of graphs , 2007, J. Comb. Theory, Ser. B.
[36] W. Haemers,et al. Which graphs are determined by their spectrum , 2003 .