Hearing the Shape of the Ising Model with a Programmable Superconducting-Flux Annealer

Two objects can be distinguished if they have different measurable properties. Thus, distinguishability depends on the Physics of the objects. In considering graphs, we revisit the Ising model as a framework to define physically meaningful spectral invariants. In this context, we introduce a family of refinements of the classical spectrum and consider the quantum partition function. We demonstrate that the energy spectrum of the quantum Ising Hamiltonian is a stronger invariant than the classical one without refinements. For the purpose of implementing the related physical systems, we perform experiments on a programmable annealer with superconducting flux technology. Departing from the paradigm of adiabatic computation, we take advantage of a noisy evolution of the device to generate statistics of low energy states. The graphs considered in the experiments have the same classical partition functions, but different quantum spectra. The data obtained from the annealer distinguish non-isomorphic graphs via information contained in the classical refinements of the functions but not via the differences in the quantum spectra.

[1]  Dong Zhou,et al.  Two-particle quantum walks applied to the graph isomorphism problem , 2010, 1002.3003.

[2]  Daniel A. Lidar,et al.  Experimental signature of programmable quantum annealing , 2012, Nature Communications.

[3]  Klas Markström,et al.  The bivariate Ising polynomial of a graph , 2009, Discret. Appl. Math..

[4]  H. Whitney The Coloring of Graphs. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[5]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[6]  Rosenbaum,et al.  Quantum annealing of a disordered magnet , 1999, Science.

[7]  U. Vazirani,et al.  How "Quantum" is the D-Wave Machine? , 2014, 1401.7087.

[8]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .

[9]  A. Young,et al.  Solving the Graph Isomorphism Problem with a Quantum Annealer , 2012, 1207.1712.

[10]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[11]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[12]  M. Lavagna Quantum Phase Transitions , 2001, cond-mat/0102119.

[13]  J. Smolin,et al.  Classical signature of quantum annealing , 2013, Front. Phys..

[14]  Jacobo Torán,et al.  Isomorphism Testing: Perspective and Open Problems , 2005, Bull. EATCS.

[15]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[16]  B. L. Waerden Die lange Reichweite der regelmäßigen Atomanordnung in Mischkristallen , 1941 .

[17]  B. Cipra An introduction to the Ising model , 1987 .

[18]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[19]  Simone Severini,et al.  A Matrix Representation of Graphs and its Spectrum as a Graph Invariant , 2006, Electron. J. Comb..

[20]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[21]  Claudio Perez Tamargo Can one hear the shape of a drum , 2008 .

[22]  Jaroslav Nesetril,et al.  Distinguishing graphs by their left and right homomorphism profiles , 2011, Eur. J. Comb..

[23]  Bikas K. Chakrabarti,et al.  Transverse Field Spin Models: From Statistical Physics to Quantum Information , 2010, 1012.0653.

[24]  B. McKay,et al.  Constructing cospectral graphs , 1982 .

[25]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[26]  Marc Noy,et al.  On Graphs Determined by Their Tutte Polynomials , 2004, Graphs Comb..

[27]  B. Gutkin,et al.  Can one hear the shape of a graph , 2001, nlin/0105020.

[28]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[29]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.

[30]  Leslie Ann Goldberg,et al.  The computational complexity of two‐state spin systems , 2003, Random Struct. Algorithms.

[31]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[32]  Tomer Kotek,et al.  Complexity of Ising Polynomials , 2011, Combinatorics, Probability and Computing.

[33]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[34]  Daniel A. Lidar,et al.  Quantum adiabatic Markovian master equations , 2012, 1206.4197.

[35]  Chris D. Godsil,et al.  Symmetric squares of graphs , 2007, J. Comb. Theory, Ser. B.

[36]  W. Haemers,et al.  Which graphs are determined by their spectrum , 2003 .