An inverse theorem for compact Lipschitz regions in ℝd using localized kernel bases

While inverse estimates in the context of radial basis function approximation on boundary-free domains have been known for at least ten years, such theorems for the more important and difficult setting of bounded domains have been notably absent. This article develops inverse estimates for finite dimensional spaces arising in radial basis function approximation and meshless methods. The inverse estimates we consider control Sobolev norms of linear combinations of a localized basis by the $L_p$ norm over a bounded domain. The localized basis is generated by forming local Lagrange functions for certain types of RBFs (namely Matern and surface spline RBFs). In this way it extends the boundary-free construction of Fuselier, Hangelbroek, Narcowich, Ward and Wright.

[1]  L. Evans,et al.  Partial Differential Equations , 1941 .

[2]  Abner J. Salgado,et al.  A Note on the Ladyženskaja-Babuška-Brezzi Condition , 2012, J. Sci. Comput..

[3]  Christian Rieger,et al.  Sampling Inequalities and Applications , 2009 .

[4]  F. J. Narcowich,et al.  Sobolev Error Estimates and a Bernstein Inequality for Scattered Data Interpolation via Radial Basis Functions , 2006 .

[5]  Holger Wendland,et al.  Inverse and saturation theorems for radial basis function interpolation , 2002, Math. Comput..

[6]  Hrushikesh Narhar Mhaskar,et al.  L BERNSTEIN ESTIMATES AND APPROXIMATION BY SPHERICAL BASIS FUNCTIONS , 2010 .

[7]  Ronald A. DeVore,et al.  Besov spaces on domains in , 1993 .

[8]  Joseph D. Ward,et al.  Polyharmonic and Related Kernels on Manifolds: Interpolation and Approximation , 2010, Foundations of Computational Mathematics.

[9]  Birgit Faermann,et al.  Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods Part II. The three-dimensional case , 2002, Numerische Mathematik.

[10]  J. Melenk On Approximation in Meshless Methods , 2005 .

[11]  R. DeVore,et al.  BESOV SPACES ON DOMAINS IN Rd , 1993 .

[12]  Michael Griebel,et al.  Multiscale Approximation and Reproducing Kernel Hilbert Space Methods , 2015, SIAM J. Numer. Anal..

[13]  Joseph D. Ward,et al.  Direct and Inverse Results on Bounded Domains for Meshless Methods via Localized Bases on Manifolds , 2014, 1406.1435.

[14]  Joseph D. Ward,et al.  Localized Bases for Kernel Spaces on the Unit Sphere , 2012, SIAM J. Numer. Anal..

[15]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[16]  T. Hangelbroek The penalized Lebesgue constant for surface spline interpolation , 2009, 0911.1815.

[17]  Hrushikesh Narhar Mhaskar,et al.  Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature , 2001, Math. Comput..

[18]  John Paul Ward,et al.  Lp Bernstein inequalities and inverse theorems for RBF approximation on Rd , 2010, J. Approx. Theory.

[19]  H. Triebel Theory of Function Spaces III , 2008 .

[20]  Carsten Carstensen,et al.  Mathematical foundation of a posteriori error estimates and adaptive mesh-refining algorithms for boundary integral equations of the first kind , 2001 .

[21]  Holger Wendland,et al.  Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting , 2004, Math. Comput..

[22]  W. Hackbusch,et al.  Finite elements on degenerate meshes: inverse-type inequalities and applications , 2005 .

[23]  Emmanuil H. Georgoulis,et al.  Inverse-type estimates on hp-finite element spaces and applications , 2008, Math. Comput..

[24]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[25]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[26]  Joseph D. Ward,et al.  Kernel Approximation on Manifolds I: Bounding the Lebesgue Constant , 2009, SIAM J. Math. Anal..

[27]  T. Hangelbroek,et al.  Kernel Approximation on Manifolds II: The L∞ Norm of the L2 Projector , 2010, SIAM J. Math. Anal..

[28]  Richard B. Lehoucq,et al.  A radial basis function Galerkin method for inhomogeneous nonlocal diffusion , 2016 .

[29]  M. Mitrea,et al.  Sharp estimates for green potentials on non-smooth domains , 2004 .

[30]  Wolfgang Dahmen,et al.  Inverse inequalities on non-quasi-uniform meshes and application to the mortar element method , 2003, Math. Comput..

[31]  Joseph D. Ward,et al.  A novel Galerkin method for solving PDES on the sphere using highly localized kernel bases , 2014, Math. Comput..

[32]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[33]  Jean-Luc Guermond,et al.  The LBB condition in fractional Sobolev spaces and applications , 2009 .

[34]  Joseph D. Ward,et al.  Kernel based quadrature on spheres and other homogeneous spaces , 2012, Numerische Mathematik.

[35]  H. Triebel Theory Of Function Spaces , 1983 .