Distributivity of implication operations over t-representable t-norms in interval-valued fuzzy set theory: The case of nilpotent t-norms

In this article we discuss the distributive equation of implications I(x,T"1(y,z))=T"2(I(x,y),I(x,z)) over t-representable t-norms generated from nilpotent t-norms in interval-valued fuzzy sets theory. As a byproduct result we show all solutions of some functional equation related to this case.

[1]  Benjamín R. C. Bedregal,et al.  On interval fuzzy S-implications , 2010, Inf. Sci..

[2]  Etienne E. Kerre,et al.  On the relationship between some extensions of fuzzy set theory , 2003, Fuzzy Sets Syst..

[3]  James E. Andrews,et al.  Combinatorial rule explosion eliminated by a fuzzy rule configuration , 1998, IEEE Trans. Fuzzy Syst..

[4]  Joan Torrens,et al.  Distributivity of strong implications over conjunctive and disjunctive uninorms , 2006, Kybernetika.

[5]  Michal Baczynski,et al.  Fuzzy Implications , 2008, Studies in Fuzziness and Soft Computing.

[6]  Didier Dubois,et al.  Terminological difficulties in fuzzy set theory - The case of "Intuitionistic Fuzzy Sets" , 2005, Fuzzy Sets Syst..

[7]  Milos Manic,et al.  Interval Type-2 fuzzy voter design for fault tolerant systems , 2011, Inf. Sci..

[8]  Benjamín R. C. Bedregal,et al.  Interval representations, Łukasiewicz implicators and Smets-Magrez axioms , 2013, Inf. Sci..

[9]  J. Mendel,et al.  Comments on "Combinatorial rule explosion eliminated by a fuzzy rule configuration" [with reply] , 1999 .

[10]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[11]  A. Kandel,et al.  Comment on "Combinatorial Rule Explosion Eliminated by a Fuzzy Rule Configuration" , 1999 .

[12]  Glad Deschrijver,et al.  Uninorms which are neither conjunctive nor disjunctive in interval-valued fuzzy set theory , 2013, Inf. Sci..

[13]  Chris Cornelis,et al.  On the representation of intuitionistic fuzzy t-norms and t-conorms , 2004, IEEE Transactions on Fuzzy Systems.

[14]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[15]  Balasubramaniam Jayaram,et al.  Rule reduction for efficient inferencing in similarity based reasoning , 2008, Int. J. Approx. Reason..

[16]  Humberto Bustince,et al.  Construction of fuzzy indices from fuzzy DI-subsethood measures: Application to the global comparison of images , 2007, Inf. Sci..

[17]  C. Alcalde,et al.  A constructive method for the definition of interval-valued fuzzy implication operators , 2005, Fuzzy Sets Syst..

[18]  Chris Cornelis,et al.  The standard completeness of interval-valued monoidal t-norm based logic , 2012, Inf. Sci..

[19]  Michal Baczynski On the Distributivity of Implication Operations over t-Representable t-Norms Generated from Strict t-Norms in Interval-Valued Fuzzy Sets Theory , 2010, IPMU.

[20]  Michal Baczynski,et al.  Distributive Equations of Implications Based on Continuous Triangular Norms (I) , 2012, IEEE Transactions on Fuzzy Systems.

[21]  Yongjian Xie,et al.  Complete solution sets of inf-→ interval-valued fuzzy relation equations , 2013, Inf. Sci..

[22]  Joan Torrens,et al.  Distributivity of residual implications over conjunctive and disjunctive uninorms , 2007, Fuzzy Sets Syst..

[23]  Oscar Castillo,et al.  A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks , 2009, Inf. Sci..

[24]  Benjamín Bedregal,et al.  K-operators: An approach to the generation of interval-valued fuzzy implications from fuzzy implications and vice versa , 2014, Inf. Sci..

[25]  Michal Baczynski Distributivity of Implication Operations over t-Representable T-Norms Generated from Nilpotent T-Norms , 2011, WILF.

[26]  M. Gorzałczany A method for inference in approximate reasoning based on interval-valued fuzzy sets , 1987 .

[27]  Michael Reinfrank,et al.  An introduction to fuzzy control (2nd ed.) , 1996 .

[28]  Tzuu-Hseng S. Li,et al.  Design of interval type-2 fuzzy sliding-mode controller , 2008, Inf. Sci..

[29]  Chris Cornelis,et al.  Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application , 2004, Int. J. Approx. Reason..

[30]  B. Baets,et al.  The fundamentals of fuzzy mathematical morphology, part 1 : basic concepts , 1995 .

[31]  Joan Torrens,et al.  A Survey on Fuzzy Implication Functions , 2007, IEEE Transactions on Fuzzy Systems.

[32]  Michal Baczynski,et al.  On the Distributivity of Fuzzy Implications Over Nilpotent or Strict Triangular Conorms , 2009, IEEE Transactions on Fuzzy Systems.

[33]  J. Balasubramaniam,et al.  On the distributivity of implication operators over T and S norms , 2004, IEEE Transactions on Fuzzy Systems.

[34]  Dr. Hans Hellendoorn,et al.  An Introduction to Fuzzy Control , 1996, Springer Berlin Heidelberg.

[35]  Jerry M. Mendel,et al.  Comments on "William E. Combs: Combinatorial rule explosion eliminated by a fuzzy rule configuration" [and reply] , 1999, IEEE Trans. Fuzzy Syst..

[36]  Yongjian Xie,et al.  Robustness of interval-valued fuzzy inference , 2011, Inf. Sci..

[37]  Benjamín R. C. Bedregal,et al.  On interval fuzzy negations , 2010, Fuzzy Sets Syst..

[38]  Ladislav J. Kohout,et al.  Semantics of implication operators and fuzzy relational products , 1980 .

[39]  Michaeł Baczyński On a class of distributive fuzzy implications , 2001 .

[40]  Humberto Bustince,et al.  Mathematical analysis of interval-valued fuzzy relations: Application to approximate reasoning , 2000, Fuzzy Sets Syst..

[41]  Barbara Pekala,et al.  Properties of Atanassov's intuitionistic fuzzy relations and Atanassov's operators , 2012, Inf. Sci..

[42]  Michal Baczynski,et al.  On the distributivity of fuzzy implications over continuous and Archimedean triangular conorms , 2010, Fuzzy Sets Syst..

[43]  E. Trillas,et al.  On the law [p/spl and/q/spl rarr/r]=[(p/spl rarr/r)V(q/spl rarr/r)] in fuzzy logic , 2002 .

[44]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..