Rational functions for guaranteed and experimentally well-conditioned global interpolation

Abstract Polynomial interpolation is known to be ill-conditioned if the interpolating points are not chosen in special ways; classical rational interpolation can give better results, but does not work in all cases and the corresponding functions can show poles in the interval of interpolation. We present here rational functions which guarantee well-conditioned interpolation on a real interval or a circle and cannot have any poles there. They can be evaluated at least as efficiently as the corresponding interpolation polynomials and the accuracy of their approximation to a given function often compares favorably with that of spline interpolants.

[1]  Manfred R. Trummer,et al.  An efficient implementation of a conformal mapping method based on the Szego¨ kernel , 1986 .

[2]  P. Henrici Barycentric formulas for interpolating trigonometric polynomials and their conjugates , 1979 .

[3]  C. Schneider,et al.  Some new aspects of rational interpolation , 1986 .

[4]  P. Henrici Fast Fourier Methods in Computational Complex Analysis , 1979 .

[5]  H. Helson Harmonic Analysis , 1983 .

[6]  Lonny B. Winrich Note on a comparison of evaluation schemes for the interpolating polynomial , 1969, Comput. J..

[7]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[8]  W. Werner Polynomial interpolation: Lagrange versus Newton , 1984 .

[9]  Jean-Paul Berrut Baryzentrische Formeln zur Trigonometrischen Interpolation (I) , 1984 .

[10]  Herbert E. Salzer New Formulas for Trigonometric Interpolation , 1960 .

[11]  Jean-Paul Berrut Integralgleichungen und Fourier-Methoden zur numerischen konformen Abbildung , 1985 .

[12]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[13]  Jean-Paul Berrut Baryzentrische Formeln zur trigonometrischen Interpolation (II) Stabilität und Anwendung auf die Fourieranalyse bei ungleichabständigen Stützstellen , 1984 .

[14]  Herbert E. Salzer Coefficients for Facilitating Trigonometric Interpolation , 1948 .

[15]  C. Lanczos Applied Analysis , 1961 .

[16]  R. Bulirsch,et al.  Interpolation und genäherte Quadratur , 1968 .

[17]  Manfred R. Trummer,et al.  Numerical conformal mapping via the Szego¨ Kernel , 1986 .

[18]  Jean-Paul Berrut,et al.  Equivalence of Nyström's method and Fourier methods for the numerical solution of Fredholm integral equations , 1987 .