Space–Frequency Ultrawideband Time-Reversal Imaging

We introduce time-reversal ultrawideband (UWB) imaging functionals based on the simultaneous utilization of spatial and UWB frequency data acquired by limited-aspect antenna arrays. The targets are discrete scatterers embedded in homogeneous or continuous random inhomogeneous media. Singular value decomposition is applied to space-frequency multistatic scattering data matrices indexed by sensor location and frequency data, and the resulting singular values and vectors are employed to construct time-domain excitation signals for UWB imaging of the embedded scatterer(s) via synthetic backpropagation (reverse migration). Spatial information needed for focusing on the embedded scatterer(s) is provided by either the left singular vectors or the eigenvectors of the space-space multistatic data matrices. The resulting UWB imaging functionals can yield statistical stability in random media.

[1]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[2]  Marc Saillard,et al.  Decomposition of the Time Reversal Operator for Electromagnetic Scattering , 1999 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Mathias Fink,et al.  Decomposition of the time reversal operator: Detection and selective focusing on two scatterers , 1996 .

[5]  A. Devaney,et al.  Time-reversal imaging with multiple signal classification considering multiple scattering between the targets , 2004 .

[6]  D.H. Chambers,et al.  Analysis of the time-reversal operator for a small spherical scatterer in an electromagnetic field , 2004, IEEE Transactions on Antennas and Propagation.

[7]  Jin Au Kong,et al.  Finite-difference time-domain simulation of scattering from objects in continuous random media , 2002, IEEE Trans. Geosci. Remote. Sens..

[8]  Mathias Fink,et al.  Eigenmodes of the time reversal operator: a solution to selective focusing in multiple-target media , 1994 .

[9]  Kyritsi,et al.  MISO time reversal and delay-spread compression for FWA channels at 5 GHz , 2004, IEEE Antennas and Wireless Propagation Letters.

[10]  Anthony J. Devaney,et al.  Time-reversal-based imaging and inverse scattering of multiply scattering point targets , 2005 .

[11]  Liliana Borcea,et al.  Statistically stable ultrasonic imaging in random media. , 2002, The Journal of the Acoustical Society of America.

[12]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[13]  G. Micolau,et al.  D.O.R.T. method as applied to electromagnetic subsurface sensing , 2003 .

[14]  Francesco Simonetti,et al.  Time-Reversal MUSIC Imaging of Extended Targets , 2007, IEEE Transactions on Image Processing.

[15]  G. Papanicolaou,et al.  Imaging and time reversal in random media , 2001 .

[16]  G. Lerosey,et al.  Time reversal of electromagnetic waves. , 2004, Physical review letters.

[17]  Sean K Lehman,et al.  Transmission mode time-reversal super-resolution imaging. , 2003, The Journal of the Acoustical Society of America.

[18]  P. Kosmas,et al.  Time reversal with the FDTD method for microwave breast cancer detection , 2005, IEEE Transactions on Microwave Theory and Techniques.

[19]  Evert C. Slob,et al.  GPR Without a Source: Cross-Correlation and Cross-Convolution Methods , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Gang Kang,et al.  Electromagnetic time-reversal imaging of a target in a cluttered environment , 2005, IEEE Transactions on Antennas and Propagation.

[21]  Pierre Borderies,et al.  DORT method as applied to ultrawideband signals for detection of buried objects , 2003, IEEE Trans. Geosci. Remote. Sens..

[22]  M. E. Yavuz,et al.  Full time-domain DORT for ultrawideband electromagnetic fields in dispersive, random inhomogeneous media , 2006, IEEE Transactions on Antennas and Propagation.

[23]  J. Devaney,et al.  1 Super-resolution Processing of Multi-static Data Using Time Reversal and MUSIC A , 2000 .

[24]  M. E. Yavuz,et al.  A numerical study of time-reversed UWB electromagnetic waves in continuous random media , 2005, IEEE Antennas and Wireless Propagation Letters.

[25]  Marc Saillard,et al.  Reconstruction of buried objects surrounded by small inhomogeneities , 1999 .

[26]  Bernhard Scholz,et al.  Towards virtual electrical breast biopsy: space-frequency MUSIC for trans-admittance data , 2002, IEEE Transactions on Medical Imaging.

[27]  Hongkai Zhao,et al.  Analysis of the Response Matrix for an Extended Target , 2004, SIAM J. Appl. Math..

[28]  P. Drummond,et al.  Time reversed acoustics , 1997 .

[29]  F.L. Teixeira,et al.  On the Sensitivity of Time-Reversal Imaging Techniques to Model Perturbations , 2008, IEEE Transactions on Antennas and Propagation.

[30]  Fernando L. Teixeira,et al.  Frequency dispersion compensation in time reversal techniques for UWB electromagnetic waves , 2005, IEEE Geoscience and Remote Sensing Letters.

[31]  B. Henty,et al.  Multipath-enabled super-resolution for rf and microwave communication using phase-conjugate arrays. , 2004, Physical review letters.

[32]  A.J. Devaney Time reversal imaging of obscured targets from multistatic data , 2005, IEEE Transactions on Antennas and Propagation.

[33]  Mickael Tanter,et al.  Time-reversed acoustics , 2000 .

[34]  Jeffrey L. Krolik,et al.  Electromagnetic Target Detection in Uncertain Media: Time-Reversal and Minimum-Variance Algorithms , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[35]  H. Lev-Ari,et al.  The time-reversal technique re-interpreted: subspace-based signal processing for multi-static target location , 2000, Proceedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop. SAM 2000 (Cat. No.00EX410).