March separate, strike together--role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer's disease.

[1]  Xiongwei Zhu,et al.  Mitochondrial DNA oxidative damage and repair in aging and Alzheimer's disease. , 2013, Antioxidants & redox signaling.

[2]  L. Tsai,et al.  Diaminothiazoles Modify Tau Phosphorylation and Improve the Tauopathy in Mouse Models*♦ , 2013, The Journal of Biological Chemistry.

[3]  M. Feany,et al.  Why size matters – balancing mitochondrial dynamics in Alzheimer's disease , 2013, Trends in Neurosciences.

[4]  J. Mertens,et al.  Embryonic stem cell-based modeling of tau pathology in human neurons. , 2013, The American journal of pathology.

[5]  Yee Lian Chew,et al.  PTL-1 regulates neuronal integrity and lifespan in C. elegans , 2013, Journal of Cell Science.

[6]  S. Endo,et al.  Exome sequencing of senescence-accelerated mice (SAM) reveals deleterious mutations in degenerative disease-causing genes , 2013, BMC Genomics.

[7]  R. Nitsch,et al.  NMDA receptor subunit composition determines beta-amyloid-induced neurodegeneration and synaptic loss , 2013, Cell Death and Disease.

[8]  R. Swanson,et al.  Phosphoinositide 3-kinase couples NMDA receptors to superoxide release in excitotoxic neuronal death , 2013, Cell Death and Disease.

[9]  E. Mandelkow,et al.  Mechanistic basis of phenothiazine-driven inhibition of Tau aggregation. , 2013, Angewandte Chemie.

[10]  H. Higgs,et al.  An Actin-Dependent Step in Mitochondrial Fission Mediated by the ER-Associated Formin INF2 , 2013, Science.

[11]  I. Grundke‐Iqbal,et al.  Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. , 2012, Journal of Alzheimer's disease : JAD.

[12]  Jennifer L Greene,et al.  Nitric Oxide Regulates Mitochondrial Fatty Acid Metabolism Through Reversible Protein S-Nitrosylation , 2013, Science Signaling.

[13]  P. Reddy,et al.  Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer's disease. , 2012, Human molecular genetics.

[14]  M. Feany,et al.  Tau Promotes Neurodegeneration via DRP1 Mislocalization In Vivo , 2012, Neuron.

[15]  E. Mandelkow,et al.  Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. , 2012, Human molecular genetics.

[16]  E. Suzuki,et al.  Loss of Axonal Mitochondria Promotes Tau-Mediated Neurodegeneration and Alzheimer's Disease–Related Tau Phosphorylation Via PAR-1 , 2012, PLoS genetics.

[17]  D. Chan,et al.  Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit , 2012, Human molecular genetics.

[18]  A. Reichert,et al.  A New Link to Mitochondrial Impairment in Tauopathies , 2012, Molecular Neurobiology.

[19]  P. Reddy,et al.  Mitochondrial division ensures the survival of postmitotic neurons by suppressing oxidative damage , 2012, The Journal of cell biology.

[20]  Subhojit Roy,et al.  Early and Selective Impairments in Axonal Transport Kinetics of Synaptic Cargoes Induced by Soluble Amyloid β‐Protein Oligomers , 2012, Traffic.

[21]  E. Rugarli,et al.  Mitochondrial quality control: a matter of life and death for neurons , 2012, The EMBO journal.

[22]  N. Plesnila,et al.  Inhibition of Drp1 provides neuroprotection in vitro and in vivo , 2012, Cell Death and Differentiation.

[23]  P. Dolan,et al.  Truncated tau and Aβ cooperatively impair mitochondria in primary neurons , 2012, Neurobiology of Aging.

[24]  S. Andrews,et al.  Age-dependent axonal transport and locomotor changes and tau hypophosphorylation in a “P301L” tau knockin mouse , 2012, Neurobiology of Aging.

[25]  Y. Toyoshima,et al.  Regulation of Mitochondrial Transport and Inter-Microtubule Spacing by Tau Phosphorylation at the Sites Hyperphosphorylated in Alzheimer's Disease , 2012, The Journal of Neuroscience.

[26]  P. Reddy,et al.  Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer's disease. , 2011, Human molecular genetics.

[27]  R. Nitsch,et al.  Combined expression of tau and the Harlequin mouse mutation leads to increased mitochondrial dysfunction, tau pathology and neurodegeneration , 2011, Neurobiology of Aging.

[28]  D. Stojanovski,et al.  The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. , 2011, Cellular signalling.

[29]  A. Peters,et al.  Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer's disease brain. , 2011, The American journal of pathology.

[30]  P. Reddy,et al.  Assessment of newly synthesized mitochondrial DNA using BrdU labeling in primary neurons from Alzheimer's disease mice: Implications for impaired mitochondrial biogenesis and synaptic damage. , 2011, Biochimica et biophysica acta.

[31]  S. Lipton,et al.  Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases , 2011, Cell Death and Differentiation.

[32]  A. Andreadis,et al.  Pathogenic Forms of Tau Inhibit Kinesin-Dependent Axonal Transport through a Mechanism Involving Activation of Axonal Phosphotransferases , 2011, The Journal of Neuroscience.

[33]  P. Reddy,et al.  Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: implications for neuronal damage. , 2011, Human molecular genetics.

[34]  E. Schon,et al.  Mitochondria: The Next (Neurode)Generation , 2011, Neuron.

[35]  Ann E. Frazier,et al.  MiD49 and MiD51, new components of the mitochondrial fission machinery , 2011, EMBO reports.

[36]  J. Trojanowski,et al.  Intraneuronal APP, Not Free Aβ Peptides in 3xTg-AD Mice: Implications for Tau versus Aβ-Mediated Alzheimer Neurodegeneration , 2011, The Journal of Neuroscience.

[37]  J. Götz,et al.  Mitochondrial dysfunction - the beginning of the end in Alzheimer's disease? Separate and synergistic modes of tau and amyloid-β toxicity , 2011, Alzheimer's Research & Therapy.

[38]  P. Choudhary,et al.  Early dysregulation of the mitochondrial proteome in a mouse model of Alzheimer's disease. , 2011, Journal of proteomics.

[39]  Jürgen Götz,et al.  Amyloid-β and tau — a toxic pas de deux in Alzheimer's disease , 2011, Nature Reviews Neuroscience.

[40]  Ezzie Hutchinson,et al.  Systems neuroscience: The stress of dieting , 2011, Nature Reviews Neuroscience.

[41]  L. Mucke,et al.  Amyloid-β/Fyn–Induced Synaptic, Network, and Cognitive Impairments Depend on Tau Levels in Multiple Mouse Models of Alzheimer's Disease , 2011, The Journal of Neuroscience.

[42]  Kai Zhang,et al.  Tau Reduction Prevents Aβ-Induced Defects in Axonal Transport , 2010, Science.

[43]  M. Guilhaus,et al.  Aβ and human amylin share a common toxicity pathway via mitochondrial dysfunction , 2010 .

[44]  Jürgen Götz,et al.  Dendritic Function of Tau Mediates Amyloid-β Toxicity in Alzheimer's Disease Mouse Models , 2010, Cell.

[45]  E. Mandelkow,et al.  Fyn-Tau-Amyloid: A Toxic Triad , 2010, Cell.

[46]  J. Kril,et al.  Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer's disease models , 2010, Proceedings of the National Academy of Sciences.

[47]  Kaihua Guo,et al.  Ginkgo biloba extract EGb761 protects against aging-associated mitochondrial dysfunction in platelets and hippocampi of SAMP8 mice , 2010, Platelets.

[48]  M. Feany,et al.  Lysosomal Dysfunction Promotes Cleavage and Neurotoxicity of Tau In Vivo , 2010, PLoS genetics.

[49]  J. Brion,et al.  Glycogen synthase kinase-3β and the p25 activator of cyclin dependent kinase 5 increase pausing of mitochondria in neurons , 2010, Neuroscience.

[50]  M. Guilhaus,et al.  Aβ and human amylin share a common toxicity pathway via mitochondrial dysfunction , 2010, Proteomics.

[51]  T. Zako,et al.  Amyloid oligomers: formation and toxicity of Aβ oligomers , 2010, The FEBS journal.

[52]  D. Chan,et al.  Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases , 2009, Human molecular genetics.

[53]  T. Kensler,et al.  The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice , 2009, The Journal of cell biology.

[54]  R. Hamilton,et al.  Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease , 2009, Proceedings of the National Academy of Sciences.

[55]  J. McCaffery,et al.  Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. , 2009, Molecular biology of the cell.

[56]  George Perry,et al.  Impaired Balance of Mitochondrial Fission and Fusion in Alzheimer's Disease , 2009, The Journal of Neuroscience.

[57]  M. Beal Faculty Opinions recommendation of S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. , 2009 .

[58]  Satoshi O. Suzuki,et al.  Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice , 2009, Nature Cell Biology.

[59]  Jean-Claude Martinou,et al.  SLP‐2 is required for stress‐induced mitochondrial hyperfusion , 2009, The EMBO journal.

[60]  J. Götz,et al.  Phosphorylated Tau Interacts with c-Jun N-terminal Kinase-interacting Protein 1 (JIP1) in Alzheimer Disease* , 2009, The Journal of Biological Chemistry.

[61]  Concepción Lillo,et al.  Axonal Stress Kinase Activation and Tau Misbehavior Induced by Kinesin-1 Transport Defects , 2009, The Journal of Neuroscience.

[62]  P. Dolan,et al.  Caspase-cleaved Tau Expression Induces Mitochondrial Dysfunction in Immortalized Cortical Neurons , 2009, The Journal of Biological Chemistry.

[63]  F. Müller-Spahn,et al.  Amyloid-beta Leads to Impaired Cellular Respiration, Energy Production and Mitochondrial Electron Chain Complex Activities in Human Neuroblastoma Cells , 2009, Cellular and Molecular Neurobiology.

[64]  A. Godzik,et al.  S-Nitrosylation of Drp1 Mediates β-Amyloid-Related Mitochondrial Fission and Neuronal Injury , 2009, Science.

[65]  R. Margreiter,et al.  Heterogeneity of Mitochondria and Mitochondrial Function within Cells as Another Level of Mitochondrial Complexity , 2009, International journal of molecular sciences.

[66]  L. Mucke,et al.  Epilepsy and cognitive impairments in Alzheimer disease. , 2009, Archives of neurology.

[67]  J. Götz,et al.  Substrate-specific reduction of PP2A activity exaggerates tau pathology. , 2009, Biochemical and biophysical research communications.

[68]  Xiongwei Zhu,et al.  Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins , 2008, Proceedings of the National Academy of Sciences.

[69]  Jürgen Götz,et al.  Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia , 2008, Proceedings of the National Academy of Sciences.

[70]  K. Raley-Susman,et al.  The invertebrate microtubule-associated protein PTL-1 functions in mechanosensation and development in Caenorhabditis elegans , 2008, Development Genes and Evolution.

[71]  O. Shirihai,et al.  Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. , 2008, Biochimica et biophysica acta.

[72]  Xiongwei Zhu,et al.  Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer's disease patients. , 2008, The American journal of pathology.

[73]  J. Götz,et al.  Divergent phosphorylation pattern of tau in P301L tau transgenic mice , 2008, The European journal of neuroscience.

[74]  J. Götz,et al.  Animal models of Alzheimer's disease and frontotemporal dementia , 2008, Nature Reviews Neuroscience.

[75]  T. Shea,et al.  Tau inhibits anterograde axonal transport and perturbs stability in growing axonal neurites in part by displacing kinesin cargo: neurofilaments attenuate tau-mediated neurite instability. , 2008, Cell motility and the cytoskeleton.

[76]  D. Dias-Santagata,et al.  Tau phosphorylation sites work in concert to promote neurotoxicity in vivo. , 2007, Molecular biology of the cell.

[77]  P. Moreira,et al.  Alzheimer's disease: a lesson from mitochondrial dysfunction. , 2007, Antioxidants & redox signaling.

[78]  Anatol C. Kreitzer,et al.  Aberrant Excitatory Neuronal Activity and Compensatory Remodeling of Inhibitory Hippocampal Circuits in Mouse Models of Alzheimer's Disease , 2007, Neuron.

[79]  Jennifer R. Davies,et al.  Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. , 2007, Human molecular genetics.

[80]  L. Mucke,et al.  Reducing Endogenous Tau Ameliorates Amyloid ß-Induced Deficits in an Alzheimer's Disease Mouse Model , 2007, Science.

[81]  Jie Xu,et al.  Mitochondrial dysfunction in platelets and hippocampi of senescence-accelerated mice , 2007, Journal of bioenergetics and biomembranes.

[82]  Tudor A. Fulga,et al.  Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo , 2007, Nature Cell Biology.

[83]  S. Beck,et al.  A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. , 2006, Brain : a journal of neurology.

[84]  Rachel M. Devay,et al.  Mitochondrial Inner-Membrane Fusion and Crista Maintenance Requires the Dynamin-Related GTPase Mgm1 , 2006, Cell.

[85]  Y. Tsuboi Neuropathology of familial tauopathy , 2006, Neuropathology : official journal of the Japanese Society of Neuropathology.

[86]  Masato Hasegawa,et al.  Biochemistry and molecular biology of tauopathies , 2006, Neuropathology : official journal of the Japanese Society of Neuropathology.

[87]  R. Nitsch,et al.  Impaired spatial reference memory and increased exploratory behavior in P301L tau transgenic mice , 2006, Genes, brain, and behavior.

[88]  S. Halpain,et al.  The MAP1 family of microtubule-associated proteins , 2006, Genome Biology.

[89]  I. Reynolds,et al.  Mitochondrial Trafficking to Synapses in Cultured Primary Cortical Neurons , 2006, The Journal of Neuroscience.

[90]  N. Plesnila,et al.  An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[91]  J. Geddes,et al.  Synaptic Mitochondria Are More Susceptible to Ca2+Overload than Nonsynaptic Mitochondria* , 2006, Journal of Biological Chemistry.

[92]  A. Schousboe,et al.  Cellular mitochondrial heterogeneity in cultured astrocytes as demonstrated by immunogold labeling of α‐ketoglutarate dehydrogenase , 2006, Glia.

[93]  M. Pallàs,et al.  Hyperphosphorylation of microtubule-associated protein tau in senescence-accelerated mouse (SAM) , 2005, Mechanisms of Ageing and Development.

[94]  V. Popov,et al.  Mitochondria form a filamentous reticular network in hippocampal dendrites but are present as discrete bodies in axons: A three‐dimensional ultrastructural study , 2005, The Journal of comparative neurology.

[95]  R. Ravid,et al.  Proteomic and Functional Analyses Reveal a Mitochondrial Dysfunction in P301L Tau Transgenic Mice* , 2005, Journal of Biological Chemistry.

[96]  Jürgen Götz,et al.  Functional Genomics meets neurodegenerative disorders Part II: Application and data integration , 2005, Progress in Neurobiology.

[97]  S. Halpain,et al.  The MAP2/Tau family of microtubule-associated proteins , 2004, Genome Biology.

[98]  C. Haass,et al.  Amyloid β-induced Changes in Nitric Oxide Production and Mitochondrial Activity Lead to Apoptosis* , 2004, Journal of Biological Chemistry.

[99]  Feng Chen,et al.  Posttranslational modifications of tau--role in human tauopathies and modeling in transgenic animals. , 2004, Current drug targets.

[100]  Xi Chen,et al.  Materials and Methods Som Text Figs. S1 and S2 Table S1 References Abad Directly Links A␤ to Mitochondrial Toxicity in Alzheimer's Disease , 2022 .

[101]  R. Nitsch,et al.  Accelerated extinction of conditioned taste aversion in P301L tau transgenic mice , 2004, Neurobiology of Disease.

[102]  Y. Oomura,et al.  Brain lipid hydroperoxide level increases in senescence-accelerated mice at an early age , 2003, Neuroscience Letters.

[103]  M. Mattson,et al.  Triple-Transgenic Model of Alzheimer's Disease with Plaques and Tangles Intracellular Aβ and Synaptic Dysfunction , 2003, Neuron.

[104]  Erik E. Griffin,et al.  Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development , 2003, The Journal of cell biology.

[105]  Wayne N. Frankel,et al.  The harlequin mouse mutation downregulates apoptosis-inducing factor , 2002, Nature.

[106]  R. Reiter,et al.  Melatonin reduces oxidative damage of neural lipids and proteins in senescence-accelerated mouse , 2002, Neurobiology of Aging.

[107]  M. Vitek,et al.  Tau is essential to β-amyloid-induced neurotoxicity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[108]  J. Hardy,et al.  Enhanced Neurofibrillary Degeneration in Transgenic Mice Expressing Mutant Tau and APP , 2001, Science.

[109]  R. Nitsch,et al.  Formation of Neurofibrillary Tangles in P301L Tau Transgenic Mice Induced by Aβ42 Fibrils , 2001, Science.

[110]  N. Sadato,et al.  Age-Related Changes in Energy Production in Fresh Senescence-Accelerated Mouse Brain Slices as Revealed by Positron Autoradiography , 2001, Dementia and Geriatric Cognitive Disorders.

[111]  O. Hazeki,et al.  Age-related changes in manganese superoxide dismutase activity in the cerebral cortex of senescence-accelerated prone and resistant mouse , 2001, Neuroscience Letters.

[112]  R. Nitsch,et al.  Tau Filament Formation in Transgenic Mice Expressing P301L Tau* , 2001, The Journal of Biological Chemistry.

[113]  Bin Zhang,et al.  Age-Dependent Emergence and Progression of a Tauopathy in Transgenic Mice Overexpressing the Shortest Human Tau Isoform , 1999, Neuron.

[114]  T. Takeda Senescence-accelerated mouse (SAM): a biogerontological resource in aging research , 1999, Neurobiology of Aging.

[115]  D. Geschwind,et al.  Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[116]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[117]  G. Schellenberg,et al.  Tau is a candidate gene for chromosome 17 frontotemporal dementia , 1998, Annals of neurology.

[118]  T. Iwatsubo,et al.  Somatodendritic localization of phosphorylated tau in neonatal and adult rat cerebral cortex , 1997, Neuroreport.

[119]  T. Kurokawa,et al.  Evidence that glucose metabolism is decreased in the cerebrum of aged female senescence-accelerated mouse; possible involvement of a low hexokinase activity , 1996, Neuroscience Letters.

[120]  J. McDermott,et al.  ptl-1, a Caenorhabditis elegans gene whose products are homologous to the tau microtubule-associated proteins. , 1996, Biochemistry.

[121]  P. Hollenbeck The pattern and mechanism of mitochondrial transport in axons. , 1996, Frontiers in bioscience : a journal and virtual library.

[122]  C. Overly,et al.  Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons. , 1996, Journal of cell science.

[123]  T. Kurokawa,et al.  Early and transient increase in oxidative stress in the cerebral cortex of senescence-accelerated mouse , 1996, Mechanisms of Ageing and Development.

[124]  C. Brayne,et al.  Quantitative analysis of tau protein in paired helical filament preparations: Implications for the role of tau protein phosphorylation in PHF assembly in Alzheimer's disease , 1995, Neurobiology of Aging.

[125]  Akira Kato,et al.  Colocalization of prolyl endopeptidase and amyloid β-peptide in brains of senescence-accelerated mouse , 1994, Neuroscience Letters.

[126]  J. Kimura,et al.  Beta/A4 proteinlike immunoreactive granular structures in the brain of senescence-accelerated mouse. , 1993, The American journal of pathology.

[127]  J. Trojanowski,et al.  A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. , 1991, Science.

[128]  Y. Kitamura,et al.  Ligand-binding characteristics of [3H]QNB, [3H]prazosin, [3H]rauwolscine, [3H]TCP and [3H]nitrendipine to cerebral cortical and hippocampal membranes of senescence accelerated mouse , 1989, Neuroscience Letters.

[129]  J. Walker,et al.  Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[130]  H. Wiśniewski,et al.  Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[131]  Roth,et al.  Subunit structure of paired helical filaments in Alzheimer's disease , 1985, Journal of Cell Biology.

[132]  M. Kirschner,et al.  A protein factor essential for microtubule assembly. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[133]  B. Whittle,et al.  Single nucleotide variants (SNVs) define senescence-accelerated SAMP8 mice, a model of a geriatric condition. , 2013, Journal of Alzheimer's disease : JAD.

[134]  J. del Valle,et al.  Dendritic spine abnormalities in hippocampal CA1 pyramidal neurons underlying memory deficits in the SAMP8 mouse model of Alzheimer's disease. , 2012, Journal of Alzheimer's disease : JAD.

[135]  Ann E. Frazier,et al.  MiD 49 and MiD 51 , novel components of the mitochondrial fission machinery , 2011 .

[136]  G. Perry,et al.  From aging to Alzheimer's disease: unveiling "the switch" with the senescence-accelerated mouse model (SAMP8). , 2008, Journal of Alzheimer's disease : JAD.

[137]  J. Hardy,et al.  Alzheimer's disease: the amyloid cascade hypothesis: an update and reappraisal. , 2006, Journal of Alzheimer's disease : JAD.

[138]  M. Duchen,et al.  Interplay between mitochondria and cellular calcium signalling , 2004, Molecular and Cellular Biochemistry.

[139]  M. Vitek,et al.  Tau is essential to beta -amyloid-induced neurotoxicity. , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[140]  A. Matus Microtubule-associated proteins and the determination of neuronal form. , 1990, Journal de physiologie.

[141]  Elsa Lauwers,et al.  Synaptic Mitochondria in Synaptic Transmission and Organization of Vesicle Pools in Health and Disease , 2010, Front. Syn. Neurosci..

[142]  B. Hyman,et al.  Differential effect of three‐repeat and four‐repeat tau on mitochondrial axonal transport , 2009, Journal of neurochemistry.