The origin of the avian flight stroke: a kinematic and kinetic perspective

Abstract Flying birds flap their wings to generate aerodynamic forces large enough to overcome weight and drag. During this behavior, the forelimbs are displaced and deformed in a complex, coordinated sequence of movements collectively known as the “flight stroke.” Despite an influx of relevant fossil material and new functional insights from extant birds, the historical origin of the avian flight stroke remains poorly resolved. Potential behavioral precursors have been identified primarily on the basis of kinematic resemblance—similarity of movement irrespective of underlying mechanisms. We discuss fundamental issues of motion analysis that are frequently overlooked by paleontologists, and conclude that a purely kinematic approach is insufficient. Consideration of kinetics, the forces responsible for motion, offers a more complete picture of flight stroke evolution. We introduce six kinetic components that interact to determine a limb's trajectory. Phylogenetic mapping reveals that forelimb loading patterns have undergone at least two major transitions on the line from basal archosaur to modern bird. Using this kinematic and kinetic perspective, we offer four specific criteria to help constrain and evaluate competing scenarios for the origin of the avian flight stroke.

[1]  F. Jenkins The Evolution of the Avian Shoulder Joint , 1993 .

[2]  Hans-Joachim Gregor,et al.  The beginnings of birds: Proceedings of the International Archaeopteryx Conference, Eichstätt, 1984. M.K. Hecht, J.H. Ostrom, G. Viohl and P. Wellnhofer (Editors). Jura Museum, Eichstätt, 382 pp. DM 90.00 , 1988 .

[3]  A. Biewener,et al.  Estimates of circulation and gait change based on a three-dimensional kinematic analysis of flight in cockatiels (Nymphicus hollandicus) and ringed turtle-doves (Streptopelia risoria). , 2002, The Journal of experimental biology.

[4]  G. E. Goslow,et al.  The Avian Shoulder: An Experimental Approach , 1989 .

[5]  T L Daniel,et al.  Animal movement, mechanical tuning and coupled systems. , 1999, The Journal of experimental biology.

[6]  Maxheinz Sy,et al.  Funktionell-anatomische Untersuchungen am Vogelflügel , 1936, Journal für Ornithologie.

[7]  Zhonghe Zhou,et al.  Four-winged dinosaurs from China , 2003, Nature.

[8]  P. Sereno THE ORIGIN AND EVOLUTION OF DINOSAURS , 1997 .

[9]  Coordination between the legs and tail during digging and swimming in sand crabs , 1997, Journal of Comparative Physiology A.

[10]  K. Dial Wing-Assisted Incline Running and the Evolution of Flight , 2003, Science.

[11]  Stephen M Gatesy,et al.  Guineafowl hind limb function. II: Electromyographic analysis and motor pattern evolution , 1999, Journal of morphology.

[12]  K. Carpenter Forelimb biomechanics of nonavian theropod dinosaurs in predation , 2002 .

[13]  Tyson L. Hedrick,et al.  Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds , 2004, Journal of Experimental Biology.

[14]  A. Biewener,et al.  In vivo pectoralis muscle force-length behavior during level flight in pigeons (Columba livia) , 1998, The Journal of experimental biology.

[15]  Matthew W Bundle,et al.  Mechanics of wing-assisted incline running (WAIR) , 2003, Journal of Experimental Biology.

[16]  Thomas R. Holtz,et al.  The phylogenetic position of the Tyrannosauridae: implications for theropod systematics , 1994, Journal of Paleontology.

[17]  K. Dial Avian Flight , 2006 .

[18]  Jeremy M. V. Rayner,et al.  Recent Advances in the Study of Bats , 1988 .

[19]  N. Özkaya,et al.  Fundamentals of Biomechanics: Equilibrium, Motion, and Deformation , 1991 .

[20]  Phillip Burgers,et al.  The wing of Archaeopteryx as a primary thrust generator , 1999, Nature.

[21]  Xing Xu,et al.  A dromaeosaurid dinosaur with a filamentous integument from the Yixian Formation of China , 1999, Nature.

[22]  Stephen M. Gatesy,et al.  Caudofemoral musculature and the evolution of theropod locomotion , 1990, Paleobiology.

[23]  Ronald F. Zernicke,et al.  Predictions for neural control based on limb dynamics , 1987, Trends in Neurosciences.

[24]  Ian Parberry,et al.  3D Math Primer for Graphics and Game Development, 2nd Edition , 2011 .

[25]  Mariano Garcia,et al.  Tyrannosaurus was not a fast runner , 2002, Nature.

[26]  N. Poppen,et al.  Forces at the glenohumeral joint in abduction. , 1978, Clinical orthopaedics and related research.

[27]  G. E. Goslow,et al.  The functional anatomy of the shoulder of the savannah monitor lizard (Varanus exanthematicus) , 1983, Journal of morphology.

[28]  M. Norell,et al.  Two feathered dinosaurs from northeastern China , 1998, Nature.

[29]  N. A. Bernshteĭn The co-ordination and regulation of movements , 1967 .

[30]  T J Roberts,et al.  Muscular Force in Running Turkeys: The Economy of Minimizing Work , 1997, Science.

[31]  R. H. Brown The flight of birds; the flapping cycle of the pigeon. , 1948, The Journal of experimental biology.

[32]  S. Gatesy,et al.  LOCOMOTOR MODULES AND THE EVOLUTION OF AVIAN FLIGHT , 1996, Evolution; international journal of organic evolution.

[33]  Stephen M Gatesy,et al.  Guineafowl hind limb function. I: Cineradiographic analysis and speed effects , 1999, Journal of morphology.

[34]  Ostrom Jh,et al.  Bird flight: how did it begin? , 1979, American scientist.

[35]  L. Chiappe,et al.  The first 85 million years of avian evolution , 1995, Nature.

[36]  A. Bekoff,et al.  Constrained and flexible features of rhythmical hindlimb movements in chicks: kinematic profiles of walking, swimming and airstepping. , 1992, The Journal of experimental biology.

[37]  L. Chiappe,et al.  The origin of birds and their flight. , 1998, Scientific American.

[38]  C. Pennycuick Power requirements for horizontal flight in the pigeon Columba livia , 1968 .

[39]  P. Sereno,et al.  The evolution of dinosaurs. , 1999, Science.

[40]  J. H. Ostrom,et al.  The Ancestry of Birds , 1973, Nature.

[41]  G. E. Goslow,et al.  The functional anatomy of the shoulder in the European starling (Sturnus vulgaris) , 1991, Journal of morphology.

[42]  Tobalske,et al.  Flight kinematics of black-billed magpies and pigeons over a wide range of speeds , 1996, The Journal of experimental biology.

[43]  D. Steadman Mesozoic Birds: Above the Heads of Dinosaurs , 2003 .

[44]  Pei-ji Chen,et al.  An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China , 1998, Nature.

[45]  S. Gould,et al.  Exaptation—a Missing Term in the Science of Form , 1982, Paleobiology.

[46]  S. Chatterjee,et al.  The Rise of Birds: 225 Million Years of Evolution , 1999 .

[47]  G. E. Goslow,et al.  A Cineradiographic Analysis of Bird Flight: The Wishbone in Starlings Is a Spring , 1988, Science.

[48]  John H. Ostrom,et al.  Archaeopteryx and the origin of birds , 1976 .

[49]  J. Scott Altenbach,et al.  The Functional Anatomy of the Shoulder of the Pallid Bat, Antrozous pallidus , 1983 .

[50]  K. Dial,et al.  Kinematic, aerodynamic and anatomical mechanisms in the slow, maneuvering flight of pigeons , 1998, The Journal of experimental biology.

[51]  Matthew T. Wheeler,et al.  Skeletal Muscle Structure and Function , 2006 .

[52]  J. H. Ostrom Archaeopteryx and the Origin of Flight , 1974, The Quarterly Review of Biology.

[53]  H. Rosenberg Skeletal Muscle Structure and Function , 1977 .

[54]  J. Dubbeldam Evolution of Playlike Behaviour and the Uncoupling of Neural Locomotor Mechanisms , 2001 .

[55]  Xing Xu,et al.  A therizinosauroid dinosaur with integumentary structures from China , 1999, Nature.

[56]  M. Norell,et al.  Palaeontology: 'Modern' feathers on a non-avian dinosaur , 2002, Nature.

[57]  J. GRAHAM KERR,et al.  The Osteology of the Reptiles , 1926, Nature.

[58]  Adrian L. R. Thomas,et al.  On the origins of birds: the sequence of character acquisition in the evolution of avian flight , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[59]  J F Soechting,et al.  Moving in three-dimensional space: frames of reference, vectors, and coordinate systems. , 1992, Annual review of neuroscience.

[60]  Kevin Padian,et al.  The origin and early evolution of birds , 1998 .

[61]  Poppen Nk,et al.  Forces at the glenohumeral joint in abduction. , 1978 .

[62]  G. Dyke,et al.  THE MESOZOIC RADIATION OF BIRDS , 2002 .

[63]  J. Gauthier Saurischian monophyly and the origin of birds , 1986 .

[64]  R. Harris-Warrick,et al.  The evolution of neuronal circuits underlying species-specific behavior , 1999, Current Opinion in Neurobiology.

[65]  P. Wainwright,et al.  EVOLUTION OF PUFFERFISH INFLATION BEHAVIOR , 1997, Evolution; international journal of organic evolution.