The landscape of somatic mutations in Infant MLL rearranged acute lymphoblastic leukemias

Infant acute lymphoblastic leukemia (ALL) with MLL rearrangements (MLL-R) represents a distinct leukemia with a poor prognosis. To define its mutational landscape, we performed whole-genome, exome, RNA and targeted DNA sequencing on 65 infants (47 MLL-R and 18 non–MLL-R cases) and 20 older children (MLL-R cases) with leukemia. Our data show that infant MLL-R ALL has one of the lowest frequencies of somatic mutations of any sequenced cancer, with the predominant leukemic clone carrying a mean of 1.3 non-silent mutations. Despite this paucity of mutations, we detected activating mutations in kinase-PI3K-RAS signaling pathway components in 47% of cases. Surprisingly, these mutations were often subclonal and were frequently lost at relapse. In contrast to infant cases, MLL-R leukemia in older children had more somatic mutations (mean of 6.5 mutations/case versus 1.3 mutations/case, P = 7.15 × 10−5) and had frequent mutations (45%) in epigenetic regulators, a category of genes that, with the exception of MLL, was rarely mutated in infant MLL-R ALL.

Cheng Cheng | Li Ding | Robert Huether | Guolian Kang | Jinghui Zhang | Thoas Fioretos | Matthew Parker | Susana Raimondi | Heather L. Mulder | Jing Ma | Michael Edmonson | Elaine R Mardis | Michael Rusch | Jared Becksfort | Ching-Hon Pui | John Easton | Lei Wei | Stanley Pounds | Daniel Catchpoole | Yongjin Li | Sheila Shurtleff | Panduka Nagahawatte | Lei Shi | Amanda Rush | Deqing Pei | Gang Wu | Michael C. Rusch | Michael N. Edmonson | R. Wilson | E. Mardis | J. Downing | S. Shurtleff | S. Raimondi | Cheng Cheng | C. Pui | L. Ding | M. Edmonson | A. Gedman | Charles Lu | T. Fioretos | Jing Ma | C. Mullighan | Guangchun Song | J. Easton | Gang Wu | Xiang Chen | A. Andersson | M. Rusch | Panduka Nagahawatte | Jianmin Wang | Lei Wei | Kristy Boggs | H. Mulder | D. Yergeau | Jinghui Zhang | R. Kriwacki | Linda Holmfeldt | J. Becksfort | Bhavin Vadodaria | D. Pei | R. Huether | D. Catchpoole | S. Pounds | Yongjin Li | P. Gupta | J. Nakitandwe | G. Kang | Lei Shi | Richard K Wilson | Xiang Chen | Kristy Boggs | Donald Yergeau | Bhavin Vadodaria | Pankaj Gupta | Guangchun Song | Charles Lu | James R Downing | Charles G Mullighan | Heather Mulder | N. Venn | R. Sutton | T. Gruber | Rosemary Sutton | A. Chetcuti | Richard Kriwacki | Jesper Heldrup | Joy Nakitandwe | Jianmin Wang | J. Dang | J. Heldrup | Jinjun Dang | Tanja A Gruber | Anna K Andersson | Amanda Larson Gedman | Linda Holmfeldt | Debbie Payne-Turner | Jayanthi Manne | Nicola C Venn | Albert Chetcuti | J. Manne | Amanda Rush | Matthew Parker | D. Payne‐Turner | R. Wilson | Deqing Pei

[1]  John D. Minna,et al.  Activating Mutations of the Noonan Syndrome-Associated SHP2/PTPN11 Gene in Human Solid Tumors and Adult Acute Myelogenous Leukemia , 2004, Cancer Research.

[2]  R. Levine,et al.  High-throughput sequencing screen reveals novel, transforming RAS mutations in myeloid leukemia patients. , 2009, Blood.

[3]  Giovanni Parmigiani,et al.  Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma , 2012, Nature Genetics.

[4]  Ken Chen,et al.  Recurring mutations found by sequencing an acute myeloid leukemia genome. , 2009, The New England journal of medicine.

[5]  R. Pieters,et al.  A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial , 2007, The Lancet.

[6]  M. Greaves,et al.  In utero rearrangements in the trithorax-related oncogene in infant leukaemias , 1993, Nature.

[7]  Barry S Taylor,et al.  Genomic and biological characterization of exon 4 KRAS mutations in human cancer. , 2010, Cancer research.

[8]  R. Gray A Class of $K$-Sample Tests for Comparing the Cumulative Incidence of a Competing Risk , 1988 .

[9]  H. Kantarjian,et al.  FLT3 inhibitors in the treatment of acute myeloid leukemia , 2011, Cancer.

[10]  Li Ding,et al.  The Pediatric Cancer Genome Project , 2012, Nature Genetics.

[11]  J. Downing,et al.  The der(11)-encoded MLL/AF-4 fusion transcript is consistently detected in t(4;11)(q21;q23)-containing acute lymphoblastic leukemia. , 1994, Blood.

[12]  M. D. Boer,et al.  The MLL recombinome of acute leukemias , 2006, Leukemia.

[13]  N. Heerema,et al.  Cytogenetic features of infants less than 12 months of age at diagnosis of acute lymphoblastic leukemia: impact of the 11q23 breakpoint on outcome: a report of the Childrens Cancer Group. , 1994, Blood.

[14]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[15]  H. Berman The Protein Data Bank: a historical perspective. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[16]  David G Hendrickson,et al.  Differential analysis of gene regulation at transcript resolution with RNA-seq , 2012, Nature Biotechnology.

[17]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[18]  R. Pieters,et al.  Cytogenetics and outcome of infants with acute lymphoblastic leukemia and absence of MLL rearrangements , 2013, Leukemia.

[19]  D. Largaespada,et al.  RAS oncogene suppression induces apoptosis followed by more differentiated and less myelosuppressive disease upon relapse of acute myeloid leukemia. , 2009, Blood.

[20]  Joshua F. McMichael,et al.  Genome Remodeling in a Basal-like Breast Cancer Metastasis and Xenograft , 2010, Nature.

[21]  R. Houlston,et al.  The silent mutational landscape of infant MLL‐AF4 pro‐B acute lymphoblastic leukemia , 2013, Genes, chromosomes & cancer.

[22]  N. Miyake,et al.  Activated K-Ras protein accelerates human MLL/AF4-induced leukemo-lymphomogenicity in a transgenic mouse model , 2011, Leukemia.

[23]  Heather L. Mulder,et al.  The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes , 2014, Nature Communications.

[24]  M. Loh,et al.  Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. , 2004, Blood.

[25]  Christopher B. Miller,et al.  Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia , 2007, Nature.

[26]  M. Greaves,et al.  Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[27]  P. Woll,et al.  Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement , 2014, Leukemia.

[28]  Laurence L. George,et al.  The Statistical Analysis of Failure Time Data , 2003, Technometrics.

[29]  J. V. van Dongen,et al.  Genetic aberrations in paediatric acute leukaemias and implications for management of patients. , 2010, The Lancet. Oncology.

[30]  S. Knapp,et al.  Targeting bromodomains: epigenetic readers of lysine acetylation , 2014, Nature Reviews Drug Discovery.

[31]  R. Stam,et al.  Frequencies and prognostic impact of RAS mutations in MLL-rearranged acute lymphoblastic leukemia in infants , 2013, Haematologica.

[32]  R. Rosenfeld Patients , 2012, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[33]  Scott A. Armstrong,et al.  MLL translocations, histone modifications and leukaemia stem-cell development , 2007, Nature Reviews Cancer.

[34]  Cheng Cheng,et al.  Treating childhood acute lymphoblastic leukemia without cranial irradiation. , 2009, The New England journal of medicine.

[35]  Li Ding,et al.  Somatic Histone H3 Alterations in Paediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas , 2012, Nature Genetics.

[36]  R. Steele,et al.  Activating K-Ras mutations outwith ‘hotspot’ codons in sporadic colorectal tumours – implications for personalised cancer medicine , 2010, British Journal of Cancer.

[37]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[38]  R. Engh,et al.  FMS-like tyrosine kinase 3-internal tandem duplication tyrosine kinase inhibitors display a nonoverlapping profile of resistance mutations in vitro. , 2009, Cancer research.

[39]  A. Biondi,et al.  Implementation of array based whole-genome high-resolution technologies confirms the absence of secondary copy-number alterations in MLL-AF4-positive infant ALL patients , 2011, Leukemia.

[40]  W. Hiddemann,et al.  Exome sequencing identifies recurring FLT3 N676K mutations in core-binding factor leukemia. , 2012, Blood.

[41]  B. Roe,et al.  Identification of complex genomic breakpoint junctions in the t(9;11) MLL-AF9 fusion gene in acute leukemia. , 1997, Genes, chromosomes & cancer.

[42]  M. Mohammadi,et al.  A molecular brake in the kinase hinge region regulates the activity of receptor tyrosine kinases. , 2007, Molecular cell.

[43]  Michael C. Rusch,et al.  CREST maps somatic structural variation in cancer genomes with base-pair resolution , 2011, Nature Methods.

[44]  R. Stone,et al.  Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain. , 2006, Blood.

[45]  Matthew W. Wilson,et al.  A Novel Retinoblastoma Therapy from Genomic and Epigenetic Analyses , 2011, Nature.

[46]  K. Kinzler,et al.  A frequent kinase domain mutation that changes the interaction between PI3Kα and the membrane , 2009, Proceedings of the National Academy of Sciences.

[47]  F. Lu,et al.  The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. , 2004, Molecular cell.

[48]  N. Heerema,et al.  Abnormalities of chromosome bands 15q13‐15 in childhood acute lymphoblastic leukemia , 2002, Cancer.

[49]  C. Pui,et al.  Biological and therapeutic aspects of infant leukemia. , 2000, Blood.

[50]  T. Dingermann,et al.  Secondary mutations in t(4;11) leukemia patients , 2012, Leukemia.

[51]  Cheng Cheng,et al.  A genomic random interval model for statistical analysis of genomic lesion data , 2013, Bioinform..

[52]  Jeremy Fairbank,et al.  Historical Perspective , 1987, Do We Really Understand Quantum Mechanics?.

[53]  J. S. Sodhi,et al.  Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. , 2004, Journal of molecular biology.

[54]  Suzanne Schubbert,et al.  Hyperactive Ras in developmental disorders and cancer , 2007, Nature Reviews Cancer.

[55]  J. Rowley,et al.  Chromatin structural elements and chromosomal translocations in leukemia. , 2006, DNA repair.

[56]  Jen-Fen Fu,et al.  K‐ras mutations and N‐ras mutations in childhood acute leukemias with or without mixed‐lineage leukemia gene rearrangements , 2006, Cancer.

[57]  Glenn R Masson,et al.  Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA) , 2012, Proceedings of the National Academy of Sciences.

[58]  M. Girvin,et al.  Mechanism of Constitutive Phosphoinositide 3-Kinase Activation by Oncogenic Mutants of the p85 Regulatory Subunit* , 2005, Journal of Biological Chemistry.

[59]  Ken Chen,et al.  VarScan: variant detection in massively parallel sequencing of individual and pooled samples , 2009, Bioinform..

[60]  C. Taylor,et al.  Identification of Mutations in Distinct Regions of p85 Alpha in Urothelial Cancer , 2013, PloS one.

[61]  R. Marschalek,et al.  Fine structure of translocation breakpoints in leukemic blasts with chromosomal translocation t(4;11): the DNA damage-repair model of translocation , 1998, Oncogene.

[62]  B. Peters,et al.  Somatic mutations in p85alpha promote tumorigenesis through class IA PI3K activation. , 2009, Cancer cell.

[63]  R. Wilson,et al.  BreakDancer: An algorithm for high resolution mapping of genomic structural variation , 2009, Nature Methods.

[64]  S. Nelson,et al.  Identification of somatic and germline mutations using whole exome sequencing of congenital acute lymphoblastic leukemia , 2013, BMC Cancer.

[65]  R. Ono,et al.  Mixed-lineage-leukemia (MLL) fusion protein collaborates with Ras to induce acute leukemia through aberrant Hox expression and Raf activation , 2009, Leukemia.

[66]  J. Downing,et al.  Failure of CDKN2A/B (INK4A/B-ARF)-mediated tumor suppression and resistance to targeted therapy in acute lymphoblastic leukemia induced by BCR-ABL. , 2008, Genes & development.

[67]  Catherine C. Smith,et al.  Activity of ponatinib against clinically-relevant AC220-resistant kinase domain mutants of FLT3-ITD. , 2013, Blood.

[68]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .

[69]  Dongfang Li,et al.  Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance , 2013, Nature Genetics.

[70]  Kiran C. Bobba,et al.  The genetic basis of early T-cell precursor acute lymphoblastic leukaemia , 2012, Nature.

[71]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[72]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[73]  A. Borkhardt,et al.  A DNA damage repair mechanism is involved in the origin of chromosomal translocations t(4;11) in primary leukemic cells , 1999, Oncogene.

[74]  Elizabeth D. Hutchison A Working Model , 2007 .

[75]  François Stricher,et al.  The FoldX web server: an online force field , 2005, Nucleic Acids Res..

[76]  Heather L. Mulder,et al.  Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas , 2013, Nature Genetics.