Generalized runs tests for the IID hypothesis

We provide a family of tests for the IID hypothesis based on generalized runs, powerful against unspecified alternatives, providing a useful complement to tests designed for specific alternatives, such as serial correlation, GARCH, or structural breaks. Our tests have appealing computational simplicity in that they do not require kernel density estimation, with the associated challenge of bandwidth selection. Simulations show levels close to nominal asymptotic levels. Our tests have power against both dependent and heterogeneous alternatives, as both theory and simulations demonstrate.

[1]  A. Mood The Distribution Theory of Runs , 1940 .

[2]  J. Durbin,et al.  Techniques for Testing the Constancy of Regression Relationships Over Time , 1975 .

[3]  Jean-Marie Dufour Rank Tests for Serial Dependence , 1981 .

[4]  D. Andrews Tests for Parameter Instability and Structural Change with Unknown Change Point , 1993 .

[5]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[6]  R. Durrett Probability: Theory and Examples , 1993 .

[7]  Xiaohong Chen,et al.  Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification , 2006 .

[8]  K. Hornik,et al.  The generalized fluctuation test: A unifying view , 1995 .

[9]  Norbert Henze,et al.  Empirical‐distribution‐function goodness‐of‐fit tests for discrete models , 1996 .

[10]  Anthony S. Tay,et al.  Evaluating Density Forecasts with Applications to Financial Risk Management , 1998 .

[11]  Herman J. Bierens,et al.  Asymptotic Theory of Integrated Conditional Moment Tests , 1997 .

[12]  H. White Asymptotic theory for econometricians , 1985 .

[13]  Yongmiao Hong,et al.  Hypothesis Testing in Time Series via the Empirical Characteristic Function: A Generalized Spectral Density Approach , 1999 .

[14]  D. Darling The Kolmogorov-Smirnov, Cramer-von Mises Tests , 1957 .

[15]  H. White,et al.  ASYMPTOTIC DISTRIBUTION THEORY FOR NONPARAMETRIC ENTROPY MEASURES OF SERIAL DEPENDENCE , 2005 .

[16]  J. Heckman Micro Data, Heterogeneity, and the Evaluation of Public Policy: Nobel Lecture , 2001, Journal of Political Economy.

[17]  K. Hornik,et al.  Mosum Tests for Parameter Constancy , 1995 .

[18]  M. Loève Probability Theory II , 1978 .

[19]  Peter C. B. Phillips,et al.  New Tools for Understanding Spurious Regressions , 1998 .

[20]  Maxwell B. Stinchcombe,et al.  CONSISTENT SPECIFICATION TESTING WITH NUISANCE PARAMETERS PRESENT ONLY UNDER THE ALTERNATIVE , 1998, Econometric Theory.

[21]  S. Sukhatme,et al.  Fredholm Determinant of a Positive Definite Kernel of a Special Type and Its Application , 1972 .

[22]  H. Bierens Consistent model specification tests , 1982 .

[23]  A Quick Test for Serial Correlation Suitable for Use with Non-Stationary Time Series , 1963 .

[24]  Pranab Kumar Sen Asymptotic theory of some tests for a possible change in the regression slope occurring at an unknown time point , 1980 .

[25]  Marc Hallin,et al.  Linear serial rank tests for randomness against ARMA alternatives , 1984 .

[26]  Peter J. Bickel,et al.  Convergence Criteria for Multiparameter Stochastic Processes and Some Applications , 1971 .

[27]  J. Wolfowitz,et al.  On a Test Whether Two Samples are from the Same Population , 1940 .

[28]  Y. Davydov Mixing Conditions for Markov Chains , 1974 .

[29]  J. Bai,et al.  Testing for Parameter Constancy in Linear Regressions: An Empirical Distribution Function Approach , 1996 .

[30]  D. Darling,et al.  The Cramer-Smirnov Test in the Parametric Case , 1955 .

[31]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[32]  W. Krämer,et al.  A new test for structural stability in the linear regression model , 1989 .

[33]  J. Pinkse A consistent nonparametric test for serial independence , 1998 .

[34]  K. Jogdeo Characterizations of Independence in Certain Families of Bivariate and Multivariate Distributions , 1968 .

[35]  D. Andrews Testing When a Parameter Is on the Boundary of the Maintained Hypothesis , 2001 .

[36]  Joseph G. Altonji Intertemporal Substitution in Labor Supply: Evidence from Micro Data , 1986, Journal of Political Economy.

[37]  D. Nouaud,et al.  The distribution of the P-M system in Drosophila melanogaster strains from the People's Republic of China , 1990, Genetics Selection Evolution.

[38]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[39]  P. Robinson Consistent Nonparametric Entropy-Based Testing , 1991 .

[40]  Xiaohong Chen,et al.  STATISTICAL INFERENCE FOR MULTIVARIATE RESIDUAL COPULA OF GARCH MODELS , 2009 .

[41]  Paul Doukhan,et al.  WEAK DEPENDENCE: MODELS AND APPLICATIONS TO ECONOMETRICS , 2004, Econometric Theory.

[42]  R. Davies Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .

[43]  James Durbin,et al.  Weak convergence of the sample distribution function when parameters are estimated , 1973 .

[44]  Walter Krämer,et al.  The CUSUM test for OLS residuals , 1992 .

[45]  James J. Heckman,et al.  Micro Data, Heterogeneity and the Evaluation of Public Policy Part 1 , 2001 .

[46]  Certain Tests for Randomness Applied to Data Grouped into Small Sets , 1942 .

[47]  Joris Pinkse,et al.  Those Taxes are all over the Map! A Test for Spatial Independence of Municipal Tax Rates in British Columbia , 1997 .

[48]  SIMPLIFIED RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS , 1958 .

[49]  Miguel A. Delgado TESTING SERIAL INDEPENDENCE USING THE SAMPLE DISTRIBUTION FUNCTION , 1996 .

[50]  D. Andrews,et al.  Optimal Tests When a Nuisance Parameter Is Present Only Under the Alternative , 1992 .

[51]  Qi Li,et al.  CONSISTENT MODEL SPECIFICATION TESTS , 2000, Econometric Theory.

[52]  W. Feller The Asymptotic Distribution of the Range of Sums of Independent Random Variables , 1951 .

[53]  P. Perron,et al.  A Non-local Perspective on the Power Properties of the CUSUM and CUSUM of Squares Tests for Structural Change , 2005 .

[54]  C. Crainiceanu,et al.  Nonmonotonic power for tests of a mean shift in a time series , 2001 .

[55]  N. Herrndorf A Functional Central Limit Theorem for Weakly Dependent Sequences of Random Variables , 1984 .

[56]  Herman J. Bierens,et al.  A consistent conditional moment test of functional form , 1990 .

[57]  Y. Hochberg A sharper Bonferroni procedure for multiple tests of significance , 1988 .

[58]  R. Tweedie,et al.  Geometric Ergodicity and R-positivity for General Markov Chains , 1978 .

[59]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[60]  Michael B. Marcus,et al.  Central limit theorems for C(S)-valued random variables , 1975 .

[61]  Thomas MaCurdy,et al.  An Empirical Model of Labor Supply in a Life-Cycle Setting , 1981, Journal of Political Economy.

[62]  K. Hornik,et al.  The Moving-Estimates Test for Parameter Stability , 1995, Econometric Theory.

[63]  G. Kallianpur,et al.  Norm convergent expansions for Gaussian processes in Banach spaces. , 1970 .

[64]  Subrahmaniam Kocherlakota,et al.  Goodness of fit tests for discrete distributions , 1986 .

[65]  R. Rueda sup esup,et al.  Goodness of fit for the poisson distribution based on the probability generating function , 1991 .

[66]  E. Fama The Behavior of Stock-Market Prices , 1965 .