Random Access Versus Multiple Access

The support of Internet of Things (IoT) calls for physical and media access control (MAC) solutions capable to support a very large number of wireless devices transmitting short packets with low duty cycle. This chapter provides a survey of random access (RA) schemes devised for terrestrial and satellite applications which are suited to support IoT. The RA schemes presented are typically based on multiple access techniques described in the previous chapters. In particular, RA is exploiting time-, frequency-, and code-division multiple access techniques or combinations thereof. Various flavors of non-orthogonal multiple access (NOMA) are also adopted to increase the RA scheme spectral and power efficiency. The chapter is organized as follows: Sect. 17.1 summarizes the main terrestrial RA techniques and their suitability for 5G IoT applications; Sect. 17.2 provides a survey of 5G NOMA-based RA proposals for IoT; finally, Sect. 17.3 illustrates the most promising NOMA-based RA schemes proposed or adopted for satellite networks which are also of interest to the more general terrestrial wireless applications.

[1]  Hosein Nikopour,et al.  Sparse code multiple access , 2013, 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[2]  Riccardo De Gaudenzi,et al.  Contention Resolution Diversity Slotted ALOHA (CRDSA): An Enhanced Random Access Schemefor Satellite Access Packet Networks , 2007, IEEE Transactions on Wireless Communications.

[3]  Ralf R. Müller,et al.  A systematic approach to multistage detectors in multipath fading channels , 2005, IEEE Transactions on Information Theory.

[4]  Andrew J. Viterbi,et al.  Very Low Rate Convolutional Codes for Maximum Theoretical Performance of Spread-Spectrum Multiple-Access Channels , 1990, IEEE J. Sel. Areas Commun..

[5]  Jinho Choi Low density spreading for multicarrier systems , 2004, Eighth IEEE International Symposium on Spread Spectrum Techniques and Applications - Programme and Book of Abstracts (IEEE Cat. No.04TH8738).

[6]  Gianluigi Liva,et al.  Graph-Based Analysis and Optimization of Contention Resolution Diversity Slotted ALOHA , 2011, IEEE Transactions on Communications.

[7]  Christian Kissling Performance Enhancements for Asynchronous Random Access Protocols over Satellite , 2011, 2011 IEEE International Conference on Communications (ICC).

[8]  Michele Zorzi,et al.  Capture and retransmission control in mobile radio , 1994, IEEE J. Sel. Areas Commun..

[9]  Alireza Bayesteh,et al.  Uplink contention based SCMA for 5G radio access , 2014, 2014 IEEE Globecom Workshops (GC Wkshps).

[10]  Petar Popovski,et al.  Exploiting capture effect in frameless ALOHA for massive wireless random access , 2014, 2014 IEEE Wireless Communications and Networking Conference (WCNC).

[11]  Norman Abramson,et al.  The Throughput of Packet Broadcasting Channels , 1977, IEEE Trans. Commun..

[12]  Li Ping,et al.  Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems , 2006 .

[13]  Riccardo De Gaudenzi,et al.  Random access schemes for satellite networks, from VSAT to M2M: a survey , 2018, Int. J. Satell. Commun. Netw..

[14]  Koji Ishibashi,et al.  A Simple Random Access Scheme With Multilevel Power Allocation , 2015, IEEE Communications Letters.

[15]  Mahesh Sooriyabandara,et al.  Low Power Wide Area Networks: An Overview , 2016, IEEE Communications Surveys & Tutorials.

[16]  G. Choudhury,et al.  Diversity ALOHA - A Random Access Scheme for Satellite Communications , 1983, IEEE Transactions on Communications.

[17]  R. De Gaudenzi,et al.  High Efficiency Satellite Multiple Access Scheme for Machine-to-Machine Communications , 2012, IEEE Trans. Aerosp. Electron. Syst..

[18]  Ralf R. Müller,et al.  ME-SSA: An advanced random access for the satellite return channel , 2015, 2015 IEEE International Conference on Communications (ICC).

[19]  Riccardo De Gaudenzi,et al.  Enhanced spread Aloha physical layer design and performance , 2014, Int. J. Satell. Commun. Netw..

[20]  Josep Sala-Alvarez,et al.  SINR profile for spectral efficiency optimization of SIC receivers in the many-user regime , 2015, 2015 IEEE International Conference on Communication Workshop (ICCW).

[21]  Li Ping,et al.  Interleave division multiple-access , 2006, IEEE Trans. Wirel. Commun..

[22]  Robert Metcalfe,et al.  Ethernet: distributed packet switching for local computer networks , 1976, CACM.

[23]  Ralf R. Müller,et al.  Design and analysis of low-complexity interference mitigation on vector channels , 2001, IEEE J. Sel. Areas Commun..

[24]  Shlomo Shamai,et al.  Spectral Efficiency of CDMA with Random Spreading , 1999, IEEE Trans. Inf. Theory.

[25]  Riccardo De Gaudenzi,et al.  Generalized Analytical Framework for the Performance Assessment of Slotted Random Access Protocols , 2014, IEEE Trans. Wirel. Commun..

[26]  Marie-Laure Boucheret,et al.  An enhanced multiple random access scheme for satellite communications , 2011, Wireless Telecommunications Symposium 2012.

[27]  Giuseppe Caire,et al.  Wide-band CDMA for the UMTS/IMT-2000 satellite component , 2002, IEEE Trans. Veh. Technol..

[28]  Kai Niu,et al.  Pattern Division Multiple Access—A Novel Nonorthogonal Multiple Access for Fifth-Generation Radio Networks , 2017, IEEE Transactions on Vehicular Technology.

[29]  Marco Chiani,et al.  High Throughput Random Access via Codes on Graphs: Coded Slotted ALOHA , 2011, 2011 IEEE International Conference on Communications (ICC).

[30]  Jesus Alonso-Zarate,et al.  Is the Random Access Channel of LTE and LTE-A Suitable for M2M Communications? A Survey of Alternatives , 2014, IEEE Communications Surveys & Tutorials.

[31]  Andrea Zanella,et al.  Theoretical Analysis of the Capture Probability in Wireless Systems with Multiple Packet Reception Capabilities , 2012, IEEE Transactions on Communications.

[32]  L. Kleinrock,et al.  Packet Switching in Radio Channels: Part I - Carrier Sense Multiple-Access Modes and Their Throughput-Delay Characteristics , 1975, IEEE Transactions on Communications.

[33]  C. Pateros,et al.  Novel direct sequence spread spectrum multiple access technique , 2000, MILCOM 2000 Proceedings. 21st Century Military Communications. Architectures and Technologies for Information Superiority (Cat. No.00CH37155).

[34]  Li Ping,et al.  Throughput Improvement of 802.11 Networks Via Randomization of Transmission Power Levels , 2016, IEEE Transactions on Vehicular Technology.

[35]  Oscar del Rio Herrero,et al.  Spread-spectrum techniques for the provision of packet access on the reverse link of next-generation broadband multimedia satellite systems , 2004, IEEE Journal on Selected Areas in Communications.

[36]  Lawrence G. Roberts,et al.  ALOHA packet system with and without slots and capture , 1975, CCRV.

[37]  Marie-Laure Boucheret,et al.  A Multi-Replica Decoding Technique for Contention Resolution Diversity Slotted Aloha , 2015, 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall).

[38]  Dimitri P. Bertsekas,et al.  Data networks (2nd ed.) , 1992 .

[39]  P. Karn,et al.  MACA-a New Channel Access Method for Packet Radio , 1990 .

[40]  Li Ping,et al.  Decentralized Power Control for Random Access with Successive Interference Cancellation , 2013, IEEE Journal on Selected Areas in Communications.

[41]  L. Kleinrock,et al.  Packet Switching in Radio Channels : Part Il-The Hidden Terminal Problem in Carrier Sense Multiple-Access and the Busy-Tone Solution , 2022 .

[42]  Petar Popovski,et al.  Error Floor Analysis of Coded Slotted ALOHA Over Packet Erasure Channels , 2015, IEEE Communications Letters.

[43]  Riccardo De Gaudenzi,et al.  On the Optimum Packet Power Distribution for Spread Aloha Packet Detectors With Iterative Successive Interference Cancelation , 2014, IEEE Transactions on Wireless Communications.

[44]  N. Abramson,et al.  Multiple access in wireless digital networks , 1994, Proc. IEEE.

[45]  Fouad A. Tobagi,et al.  Multiaccess Protocols in Packet Communication Systems , 1980, IEEE Trans. Commun..

[46]  Donald F. Towsley,et al.  Modeling TCP throughput: a simple model and its empirical validation , 1998, SIGCOMM '98.

[47]  Matthew Mathis,et al.  The macroscopic behavior of the TCP congestion avoidance algorithm , 1997, CCRV.

[48]  Yiqun Wu,et al.  Prototype for 5G new air interface technology SCMA and performance evaluation , 2015 .

[49]  Mustafa Eroz,et al.  Scrambled Coded Multiple Access , 2011, 2011 IEEE Vehicular Technology Conference (VTC Fall).

[50]  Alan Colvin CSMA with collision avoidance , 1983, Comput. Commun..

[51]  Stan Kay,et al.  Spread Asynchronous Scrambled Coded Multiple Access (SA-SCMA) - A New Efficient Random Access Method , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).

[52]  Alberto Mengali,et al.  Enhancing the Physical Layer of Contention Resolution Diversity Slotted ALOHA , 2017, IEEE Transactions on Communications.

[53]  Riccardo De Gaudenzi,et al.  Advances in Random Access protocols for satellite networks , 2009 .

[54]  Donald L. Schilling,et al.  Multistage linear receivers for DS-CDMA systems , 1996, Int. J. Wirel. Inf. Networks.

[55]  Riccardo De Gaudenzi,et al.  Asynchronous Contention Resolution Diversity ALOHA: Making CRDSA Truly Asynchronous , 2014, IEEE Transactions on Wireless Communications.

[56]  Hyunsoo Kim,et al.  Multiple Access for 5G New Radio: Categorization, Evaluation, and Challenges , 2017, ArXiv.

[57]  Zhifeng Yuan,et al.  Multi-User Shared Access for Internet of Things , 2016, 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring).