Modeling the Mechanical Integrity of Generic Solid Oxide Cell Stack Designs Exposed to Long‐term Operation

[1]  P. Hendriksen,et al.  Accelerated creep in solid oxide fuel cell anode supports during reduction , 2016 .

[2]  Chih-Kuang Lin,et al.  High-temperature tensile and creep properties of a ferritic stainless steel for interconnect in solid oxide fuel cell , 2011 .

[3]  H. Frandsen,et al.  Homogenization of steady-state creep of porous metals using three-dimensional microstructural reconstructions , 2016 .

[4]  H. Frandsen,et al.  Efficient modeling of metallic interconnects for thermo-mechanical simulation of SOFC stacks: Homogenized behaviors and effect of contact , 2016 .

[5]  Murat Peksen,et al.  3D thermomechanical behaviour of solid oxide fuel cells operating in different environments , 2013 .

[6]  Nobutada Ohno,et al.  Homogenized elastic–viscoplastic behavior of plate-fin structures at high temperatures: Numerical analysis and macroscopic constitutive modeling , 2010 .

[7]  P. Hendriksen,et al.  Influence of temperature and atmosphere on the strength and elastic modulus of solid oxide fuel cell anode supports , 2016 .

[8]  Murat Peksen,et al.  Numerical thermomechanical modelling of solid oxide fuel cells , 2015 .

[9]  D. Favrat,et al.  Mechanical reliability and durability of SOFC stacks. Part I: Modelling of the effect of operating conditions and design alternatives on the reliability , 2012 .

[10]  Xiaoxing Liu,et al.  Strength of Highly Porous Ceramic Electrodes , 2011 .

[11]  Lieh-Kwang Chiang,et al.  Thermal stress analysis of a planar SOFC stack , 2007 .

[12]  P. Hendriksen,et al.  Investigation of the bonding strength and bonding mechanisms of SOFCs interconnector–electrode interfaces , 2016 .

[13]  P. Hendriksen,et al.  Creep behaviour of porous metal supports for solid oxide fuel cells , 2014 .

[14]  Murat Peksen,et al.  3D transient multiphysics modelling of a complete high temperature fuel cell system using coupled CFD and FEM , 2014 .

[15]  Z. Jaworski,et al.  A Numerical Investigation of the Thermal Stresses of a Planar Solid Oxide Fuel Cell , 2016, Materials.

[16]  Daniel Favrat,et al.  Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part II: Loss of gas-tightness, electrical contact and thermal buckling , 2009 .

[17]  Francois L. E. Usseglio-Viretta,et al.  Creep behaviour of porous SOFC electrodes: Measurement and application to Ni-8YSZ cermets , 2011 .

[18]  K. Wiik,et al.  High‐Temperature Creep Behavior of Mixed Conducting La0.5Sr0.5Fe1−xCoxO3‐δ (0.5≤x≤1) Materials , 2006 .

[19]  Jan Van herle,et al.  Modelling the impact of creep on the probability of failure of a solid oxide fuel cell stack , 2014 .

[20]  H. Frandsen,et al.  Transient deformational properties of high temperature alloys used in solid oxide fuel cell stacks , 2017 .

[21]  Daniel Favrat,et al.  Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part I: Probability of failure of the cells , 2009 .

[22]  L. Blum An Analysis of Contact Problems in Solid Oxide Fuel Cell Stacks Arising from Differences in Thermal Expansion Coefficients , 2017 .