Numerical simulation of four-field extended magnetohydrodynamics in dynamically adaptive curvilinear coordinates via Newton-Krylov-Schwarz
暂无分享,去创建一个
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] A. H. Glasser,et al. Specification of monitor metrics for generating vector field-aligned numerical grids , 2005 .
[3] R. Dembo,et al. INEXACT NEWTON METHODS , 1982 .
[4] Francesco Porcelli,et al. Hamiltonian magnetic reconnection , 1999 .
[5] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[6] David E. Keyes,et al. Moving grids for magnetic reconnection via Newton-Krylov methods , 2011, Comput. Phys. Commun..
[7] Xuefei Yuan. Grid Generation Techniques in Magnetic Reconnection Simulation , 2011 .
[8] Luis A. Caffarelli,et al. The Dirichlet problem for nonlinear second-order elliptic equations I , 1984 .
[9] J. Brackbill. An adaptive grid with directional control , 1993 .
[10] David E. Keyes,et al. Application of PDSLin to the magnetic reconnection problem , 2013 .
[11] S. C. Jardin,et al. Global Extended MHD Studies of Fast Magnetic Reconnection , 2002 .
[12] C. D. Boor,et al. Good approximation by splines with variable knots. II , 1974 .
[13] Joe F. Thompson,et al. Numerical grid generation: Foundations and applications , 1985 .
[14] L. Giraud,et al. A note on relaxed and flexible GMRES , 2004 .
[15] Stephen C. Jardin,et al. A high-order implicit finite element method for integrating the two-fluid magnetohydrodynamic equations in two dimensions , 2007, J. Comput. Phys..
[16] Gian Luca Delzanno,et al. Robust, multidimensional mesh-motion based on Monge-Kantorovich equidistribution , 2011, J. Comput. Phys..
[17] Xiao-Chuan Cai,et al. A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..
[18] J. Scanlon. The Dirichlet problem for nonlinear elliptic equations. , 1955 .
[19] Gian Luca Delzanno,et al. An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization , 2008, J. Comput. Phys..
[20] Kazunari Shibata,et al. New observational facts about solar flares from Yohkoh studies — Evidence of magnetic reconnection and a unified model of flares , 1996 .
[21] J. Breslau,et al. Global extended magnetohydrodynamic studies of fast magnetic reconnection , 2003 .
[22] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[23] Vladimir D. Liseikin,et al. A Computational Differential Geometry Approach to Grid Generation (Scientific Computation) , 2003 .
[24] William Gropp,et al. Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.
[25] Dana A. Knoll,et al. An Implicit, Nonlinear Reduced Resistive MHD Solver , 2002 .
[26] Jun Zou,et al. Additive Schwarz domain decomposition methods for elliptic problems on unstructured meshes , 1994, Numerical Algorithms.
[27] Daniel N. Baker,et al. Neutral line model of substorms: Past results and present view , 1996 .
[28] R. Fitzpatrick,et al. Scaling of forced magnetic reconnection in the Hall-magnetohydrodynamical Taylor problem with arbitrary guide field , 2004 .
[29] A. A. Amsden,et al. A numerical fluid dynamics calculation method for all flow speeds , 1971 .
[30] Michael Hesse,et al. Geospace Environmental Modeling (GEM) magnetic reconnection challenge , 2001 .
[31] Dieter Biskamp,et al. Magnetic reconnection in plasmas , 2000 .
[32] Alfio Quarteroni,et al. Domain Decomposition Methods for Partial Differential Equations , 1999 .
[33] Homer F. Walker,et al. Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..
[34] Shrinivas Lankalapalli,et al. An adaptive finite element method for magnetohydrodynamics , 1998, J. Comput. Phys..
[35] William H. Press,et al. Numerical recipes in C , 2002 .
[36] Joseph E. Flaherty,et al. An adaptive mesh-moving and local refinement method for time-dependent partial differential equations , 1990, TOMS.
[37] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[38] David E. Keyes,et al. Nonlinearly Preconditioned Inexact Newton Algorithms , 2002, SIAM J. Sci. Comput..
[39] Barry Smith,et al. Domain Decomposition Methods for Partial Differential Equations , 1997 .
[40] Barry F. Smith,et al. Newton-Krylov-Schwarz methods for aerodynamics problems : compressible and incompressible flows on unstructured grids. , 1999 .
[41] M. Shashkov. Conservative Finite-Difference Methods on General Grids , 1996 .
[42] A. H. Glasser,et al. Some computational aspects on generating numerical grids , 2006 .
[43] R. Chandra. Conjugate gradient methods for partial differential equations. , 1978 .
[44] James Drake,et al. Two-fluid theory of collisionless magnetic reconnection , 1997 .
[45] David M. Young,et al. Applied Iterative Methods , 2004 .
[46] R. Fitzpatrick,et al. Scaling of forced magnetic reconnection in the Hall-magnetohydrodynamic Taylor problem , 2004 .
[47] Dana A. Knoll,et al. Enhanced Nonlinear Iterative Techniques Applied to a Nonequilibrium Plasma Flow , 1998, SIAM J. Sci. Comput..
[48] David E. Keyes,et al. Additive Schwarz-based fully coupled implicit methods for resistive Hall magnetohydrodynamic problems , 2007, J. Comput. Phys..
[49] Stephen C. Jardin,et al. Implicit solution of the four-field extended-magnetohydrodynamic equations using high-order high-continuity finite elementsa) , 2004 .
[50] A. A. Amsden,et al. Numerical calculation of almost incompressible flow , 1968 .
[51] L. Kantorovich. On the Translocation of Masses , 2006 .
[52] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[53] D. Keyes,et al. Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .
[54] Vladimir D. Liseikin,et al. Grid Generation Methods , 1999 .
[55] Stephen C. Jardin,et al. Computational Methods in Plasma Physics , 2010 .
[56] M. D. Tidriri,et al. Development and Study of Newton-Krylov-Schwarz Algorithms , 2001 .