Non-Linear Principal Component Embedding for Face Recognition

[1]  R. C. Williamson,et al.  Regularized principal manifolds , 2001 .

[2]  R. Tibshirani Principal curves revisited , 1992 .

[3]  Cordelia Schmid,et al.  High-dimensional data clustering , 2006, Comput. Stat. Data Anal..

[4]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[5]  Yuntao Qian,et al.  Face recognition using a kernel fractional-step discriminant analysis algorithm , 2007, Pattern Recognit..

[6]  Kurt Hornik,et al.  Neural networks and principal component analysis: Learning from examples without local minima , 1989, Neural Networks.

[7]  Garrison W. Cottrell,et al.  Non-Linear Dimensionality Reduction , 1992, NIPS.

[8]  Jian Yang,et al.  KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[10]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[11]  Carl-Fredrik Westin,et al.  Coloring of DT-MRI Fiber Traces Using Laplacian Eigenmaps , 2003, EUROCAST.

[12]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[13]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[14]  Anil K. Jain,et al.  Artificial neural networks for feature extraction and multivariate data projection , 1995, IEEE Trans. Neural Networks.

[15]  Adam Krzyzak,et al.  Learning and Design of Principal Curves , 2000, IEEE Trans. Pattern Anal. Mach. Intell..