Many‐body perturbation theory, coupled‐pair many‐electron theory, and the importance of quadruple excitations for the correlation problem

[1]  O. Goscinski,et al.  VARIATION--PERTURBATION EXPANSIONS AND PADE APPROXIMANTS TO THE ENERGY. , 1970 .

[2]  Josef Paldus,et al.  Correlation problems in atomic and molecular systems III. Rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methodst†‡§ , 1971 .

[3]  J. Pople,et al.  An iterative variational method and its application to configuration interaction , 1978 .

[4]  R. Bartlett,et al.  The potential energy curve for the X1Σg+ state of Mg2 calculated with many‐body perturbation theory , 1978 .

[5]  B. Brandow Linked-Cluster Expansions for the Nuclear Many-Body Problem , 1967 .

[6]  O. Sǐnanoğlu,et al.  MANY-ELECTRON THEORY OF ATOMS AND MOLECULES. I. SHELLS, ELECTRON PAIRS VS MANY-ELECTRON CORRELATIONS , 1962 .

[7]  B. Lévy,et al.  The N2 problem in molecular CI calculations , 1976 .

[8]  R. Pauncz Alternant Molecular Orbital Method , 1967 .

[9]  E. Brändas,et al.  Dispersion forces, second- and third-order energies☆ , 1968 .

[10]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[11]  P. Löwdin Studies in perturbation theory XIII. Treatment of constants of motion in resolvent method, partitioning technique, and perturbation theory , 1968 .

[12]  Isaiah Shavitt,et al.  Comparison of high-order many-body perturbation theory and configuration interaction for H2O , 1977 .

[13]  R. Bartlett,et al.  Reduced Partitioning Procedure in Configuration Interaction Studies. I. Ground States , 1972 .

[14]  H. Kümmel Compound pair states in imperfect Fermi gases , 1961 .

[15]  F. Coester,et al.  Short-range correlations in nuclear wave functions , 1960 .

[16]  Josef Paldus,et al.  Correlation Problems in Atomic and Molecular Systems. IV. Extended Coupled-Pair Many-Electron Theory and Its Application to the B H 3 Molecule , 1972 .

[17]  H. Lischka,et al.  PNO–CI (pair natural orbital configuration interaction) and CEPA–PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. II. The molecules BeH2, BH, BH3, CH4, CH−3, NH3 (planar and pyramidal), H2O, OH+3, HF and the Ne atom , 1975 .

[18]  J. Cizek,et al.  Cluster expansion analysis for delocalized systems , 1969 .

[19]  B. Roos,et al.  A new method for large-scale Cl calculations , 1972 .

[20]  R. Bartlett,et al.  Many‐body perturbation theory applied to electron pair correlation energies. I. Closed‐shell first‐row diatomic hydrides , 1976 .

[21]  P.-O. Loewdin,et al.  Studies in Perturbation Theory. IX. Connection Between Various Approaches in the Recent Development—Evaluation of Upper Bounds to Energy Eigenvalues in Schrödinger's Perturbation Theory , 1965 .

[22]  M. Blomberg,et al.  Beryllium dimer, a critical test case of MBPT and CI methods , 1978 .

[23]  U. Kaldor Degenerate many‐body perturbation theory: Excited states of H2 , 1975 .

[24]  Ernest R. Davidson,et al.  Configuration interaction calculations on the nitrogen molecule , 1974 .

[25]  N. Hush,et al.  The coupled-pair approximation in a basis of independent-pair natural orbitals , 1976 .

[26]  H. Schaefer,et al.  Electron correlation in small metal clusters. Application of a theory of self‐consistent electron pairs to the Be4 system , 1976 .

[27]  Wilfried Meyer,et al.  PNO–CI Studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane , 1973 .