Static output feedback controllers: stability and convexity

The main objective of this paper is to solve the following stabilizing output feedback control problem: given matrices (A; B/sub 2/; C/sub 2/) with appropriate dimensions, find (if one exists) a static output feedback gain L such that the closed-loop matrix A-B/sub 2/LC/sub 2/ is asymptotically stable. It is known that the existence of L is equivalent to the existence of a positive definite matrix belonging to a convex set such that its inverse belongs to another convex set. Conditions are provided for the convergence of an algorithm which decomposes the determination of the aforementioned matrix in a sequence of convex programs. Hence, this paper provides a new sufficient (but not necessary) condition for the solvability of the above stabilizing output feedback control problem. As a natural extension, we also discuss a simple procedure for the determination of a stabilizing output feedback gain assuring good suboptimal performance with respect to a given quadratic index. Some examples borrowed from the literature are solved to illustrate the theoretical results.

[1]  P. Khargonekar,et al.  Mixed H/sub 2//H/sub infinity / control: a convex optimization approach , 1991 .

[2]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1997, IEEE Trans. Autom. Control..

[3]  R. Skelton,et al.  A complete solution to the general H∞ control problem: LMI existence conditions and state space formulas , 1993, 1993 American Control Conference.

[4]  Karolos M. Grigoriadis,et al.  Covariance Controllers: A New Parameterization of the Class of All Stabilizing Controllers , 1990, 1990 American Control Conference.

[5]  P. Makila,et al.  Computational methods for parametric LQ problems--A survey , 1987 .

[6]  Jose C. Geromel,et al.  An alternate numerical solution to the linear quadratic problem , 1994, IEEE Trans. Autom. Control..

[7]  D. Bernstein,et al.  LQG control with an H/sup infinity / performance bound: a Riccati equation approach , 1989 .

[8]  Robert E. Skelton,et al.  Covariance controllers for linear continuous-time systems , 1989 .

[9]  G. Gu On the existence of linear optimal control with output feedback , 1990 .

[10]  Robert E. Skelton,et al.  Covariance Controllers: A New Parameterization of the Class of All Stabilizing Controllers , 1990 .

[11]  P. Peres,et al.  H ∞ guaranteed cost control for uncertain continuous-time linear systems , 1993 .

[12]  S. Bhattacharyya,et al.  Robust control with structure perturbations , 1988 .

[13]  J. Geromel,et al.  Convex analysis of output feedback control problems: robust stability and performance , 1996, IEEE Trans. Autom. Control..

[14]  P. Peres,et al.  On a convex parameter space method for linear control design of uncertain systems , 1991 .

[15]  M. Athans,et al.  On the determination of the optimal constant output feedback gains for linear multivariable systems , 1970 .

[16]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[17]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[18]  R. Skelton,et al.  LMI numerical solution for output feedback stabilization , 1994, Proceedings of 1994 American Control Conference - ACC '94.