Cyclic and negacyclic codes over the Galois ring GR(p2, m)

This paper deals with cyclic codes over the Galois ring GR(p^2,m). A unique set of generators for these codes and an algorithm for finding these generators are presented. The form of dual codes is studied. The obtained results on cyclic codes are extended to the class of negacyclic codes.

[1]  J. Wolfman Negacyclic and cyclic codes over Z/sub 4/ , 1999 .

[2]  Jacques Wolfmann,et al.  Negacyclic and cyclic codes over Z4 , 1999, IEEE Trans. Inf. Theory.

[3]  H. Q. Dinh,et al.  Negacyclic codes of length 2/sup s/ over galois rings , 2005, IEEE Transactions on Information Theory.

[4]  N. J. A. Sloane,et al.  Modular andp-adic cyclic codes , 1995, Des. Codes Cryptogr..

[5]  Sergio R. López-Permouth,et al.  Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.

[6]  Steven T. Dougherty,et al.  Cyclic Codes Over$$\mathbb{Z}_{4}$$ of Even Length , 2006, Des. Codes Cryptogr..

[7]  Sergio R. López-Permouth,et al.  Cyclic Codes over the Integers Modulopm , 1997 .

[8]  Taher Abualrub,et al.  Cyclic Codes of Length 2e Over Z4 , 2003, Discret. Appl. Math..

[9]  Graham H. Norton,et al.  On the Structure of Linear and Cyclic Codes over a Finite Chain Ring , 2000, Applicable Algebra in Engineering, Communication and Computing.

[10]  Thomas Blackford,et al.  Negacyclic codes over Z4 of even length , 2003, IEEE Trans. Inf. Theory.

[11]  Ana Slgean Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006 .

[12]  R. Oehmke,et al.  A Mass Formula and Rank of Cyclic Codes of Length , 2004 .

[13]  Thomas Blackford Cyclic Codes Over Z4 of Oddly Even Length , 2003, Discret. Appl. Math..

[14]  Thomas Blackford,et al.  Cyclic Codes Over Z4 of Oddly Even Length , 2001, Discret. Appl. Math..

[15]  AbualrubT.,et al.  On the generators of Z4 cyclic codes of length 2e , 2006 .

[16]  EIMEAR BYRNE,et al.  Gröbner Bases over Galois Rings with an Application to Decoding Alternant Codes , 2001, J. Symb. Comput..

[17]  Taher Abualrub On the Generators of Z_4 Cyclic Codes of Length 2^e , 2003 .

[18]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[19]  A. A. Nechaev,et al.  Canonical generating system of a monic polynomial ideal over a commutative Artinian chain ring , 2001 .

[20]  Ali Ghrayeb,et al.  A mass formula and rank of /spl Zopf//sub 4/ cyclic codes of length 2/sup e/ , 2004, IEEE Transactions on Information Theory.

[21]  G. Norton,et al.  Cyclic codes and minimal strong Gröbner bases over a principal ideal ring , 2003 .

[22]  Taher Abualrub,et al.  On the generators of Z4 cyclic codes of length 2e , 2003, IEEE Trans. Inf. Theory.

[23]  Steven T. Dougherty,et al.  On modular cyclic codes , 2007, Finite Fields Their Appl..

[24]  James L. Massey,et al.  On Repeated-root Cyclic Codes , 1991, IEEE Trans. Inf. Theory.