Cyclic and negacyclic codes over the Galois ring GR(p2, m)
暂无分享,去创建一个
[1] J. Wolfman. Negacyclic and cyclic codes over Z/sub 4/ , 1999 .
[2] Jacques Wolfmann,et al. Negacyclic and cyclic codes over Z4 , 1999, IEEE Trans. Inf. Theory.
[3] H. Q. Dinh,et al. Negacyclic codes of length 2/sup s/ over galois rings , 2005, IEEE Transactions on Information Theory.
[4] N. J. A. Sloane,et al. Modular andp-adic cyclic codes , 1995, Des. Codes Cryptogr..
[5] Sergio R. López-Permouth,et al. Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.
[6] Steven T. Dougherty,et al. Cyclic Codes Over$$\mathbb{Z}_{4}$$ of Even Length , 2006, Des. Codes Cryptogr..
[7] Sergio R. López-Permouth,et al. Cyclic Codes over the Integers Modulopm , 1997 .
[8] Taher Abualrub,et al. Cyclic Codes of Length 2e Over Z4 , 2003, Discret. Appl. Math..
[9] Graham H. Norton,et al. On the Structure of Linear and Cyclic Codes over a Finite Chain Ring , 2000, Applicable Algebra in Engineering, Communication and Computing.
[10] Thomas Blackford,et al. Negacyclic codes over Z4 of even length , 2003, IEEE Trans. Inf. Theory.
[11] Ana Slgean. Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006 .
[12] R. Oehmke,et al. A Mass Formula and Rank of Cyclic Codes of Length , 2004 .
[13] Thomas Blackford. Cyclic Codes Over Z4 of Oddly Even Length , 2003, Discret. Appl. Math..
[14] Thomas Blackford,et al. Cyclic Codes Over Z4 of Oddly Even Length , 2001, Discret. Appl. Math..
[15] AbualrubT.,et al. On the generators of Z4 cyclic codes of length 2e , 2006 .
[16] EIMEAR BYRNE,et al. Gröbner Bases over Galois Rings with an Application to Decoding Alternant Codes , 2001, J. Symb. Comput..
[17] Taher Abualrub. On the Generators of Z_4 Cyclic Codes of Length 2^e , 2003 .
[18] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[19] A. A. Nechaev,et al. Canonical generating system of a monic polynomial ideal over a commutative Artinian chain ring , 2001 .
[20] Ali Ghrayeb,et al. A mass formula and rank of /spl Zopf//sub 4/ cyclic codes of length 2/sup e/ , 2004, IEEE Transactions on Information Theory.
[21] G. Norton,et al. Cyclic codes and minimal strong Gröbner bases over a principal ideal ring , 2003 .
[22] Taher Abualrub,et al. On the generators of Z4 cyclic codes of length 2e , 2003, IEEE Trans. Inf. Theory.
[23] Steven T. Dougherty,et al. On modular cyclic codes , 2007, Finite Fields Their Appl..
[24] James L. Massey,et al. On Repeated-root Cyclic Codes , 1991, IEEE Trans. Inf. Theory.