SummaryFor small mixing angles θ the amplification of ν oscillations in matter has the resonance form (resonance in neutrino energy or matter density). In the Sun resonance effect results in nontrivial changing (suppression) of ν-flux for a wide range of neutrino parameters Δm2=(3·10−4÷10−8) (eV)2, sin22θ>10−4.RiassuntoPer piccoli angoli di mescolanemto θ l’amplificazione delle oscillazioni neutriniche nella materia ha la forma di risonanza (risonanza nell’energia neutrinica o densità di materia). Nel sole l’effetto di risonanza produce un cambiamento non banale (soppressione) del flusso di neutrini per un’ampia gamma di parametri neutrinici Δm2=3·10−4÷10−8 (eV)2, sin22θ>10−4.РезюмеДля малых угдов смешивания усиление ν ссцилльций в веществе имеет резонансную форму (резонанс по энергии нейтрино ило плотности вещества). В Солнце резонансный эффект приводит к сложному изменению (подавлению) ν-потока для широкого диапазна нейтринных параметров: Δm2-3·(10−4÷10−8) эВ2, sin22θ>10−4.
[1]
V. A. Kuz’min.
Neutrino production in the 3 He(p, e + v ) 4 He reaction in solar interiors
,
1965
.
[2]
B. Pontecorvo,et al.
Neutrino astronomy and lepton charge
,
1969
.
[3]
T. Wu,et al.
Remarks on e$sup +$e$sup -$ annihilation into hadrons in quantum field theory
,
1975
.
[4]
Lincoln Wolfenstein,et al.
Neutrino Oscillations in Matter
,
1978
.
[5]
L. Wolfenstein.
Neutrino Oscillations and Stellar Collapse
,
1979
.
[6]
Sandip Pakvasa,et al.
Matter effects on three-neutrino oscillations
,
1980
.
[7]
K. Whisnant,et al.
Realistic Calculations of Solar Neutrino Oscillations
,
1981
.
[8]
S. Lubow,et al.
Standard Solar Models and the Uncertainties in Predicted Capture Rates of Solar Neutrinos
,
1982
.