Q–S synchronization between chaotic systems with double scaling functions

A double function Q–S synchronization (DFQSS) scheme of non-identical chaotic systems is proposed and analyzed with the assumption that all of the parameters are unknown. The sufficient conditions for achieving the double function Q–S synchronization with the desired scaling functions of two different chaotic systems (including the systems of non-identical dimension) are derived based on Lyapunov stability theory. By the adaptive control technique, the control laws and the corresponding parameter update laws are presented such that the DFQSS of non-identical chaotic systems is to be achieved. Numerical simulations and a brief discussion conclude the paper.

[1]  Zhenya Yan,et al.  Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic systems--a symbolic-numeric computation approach. , 2005, Chaos.

[2]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[3]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[4]  Zhenya Yan,et al.  Chaos Q–S synchronization between Rössler system and the new unified chaotic system , 2005 .

[5]  David W. Lewis,et al.  Matrix theory , 1991 .

[6]  Ming-Chung Ho,et al.  Reduced-order synchronization of chaotic systems with parameters unknown , 2006 .

[7]  Yong Chen,et al.  Generalized Q-S (lag, anticipated and complete) synchronization in modified Chua's circuit and Hindmarsh-Rose systems , 2006, Appl. Math. Comput..

[8]  Simin Yu,et al.  Generating hyperchaotic Lü attractor via state feedback control , 2006 .

[9]  Guanrong Chen,et al.  Generating Hyperchaos via State Feedback Control , 2005, Int. J. Bifurc. Chaos.

[10]  Xiao-Song Yang,et al.  Concepts of synchronization in dynamical systems , 1999 .

[11]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[12]  Kecun Zhang,et al.  Adaptive function Q‐S synchronization of chaotic systems with unknown parameters , 2009 .

[13]  Zhenya Yan,et al.  Q-S (complete or anticipated) synchronization backstepping scheme in a class of discrete-time chaotic (hyperchaotic) systems: a symbolic-numeric computation approach. , 2006, Chaos.

[14]  Ronnie Mainieri,et al.  Projective Synchronization In Three-Dimensional Chaotic Systems , 1999 .

[15]  S. Ge,et al.  Adaptive synchronization of uncertain chaotic systems via backstepping design , 2001 .

[16]  Zhenyuan Xu,et al.  A general scheme for Q-S synchronization of chaotic systems , 2008 .

[17]  O. Rössler An equation for continuous chaos , 1976 .