Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part I: Micro-structural characterization and geometric modeling

Abstract A computational strategy to predict the elastic properties of carbon nanotube-reinforced polymer composites is proposed in this two-part paper. In Part I, the micro-structural characteristics of these nano-composites are discerned. These characteristics include networks/agglomerations of carbon nanotubes and thick polymer interphase regions between the nanotubes and the surrounding matrix. An algorithm is presented to construct three-dimensional geometric models with large amounts of randomly dispersed and aggregated nanotubes. The effects of the distribution of the nanotubes and the thickness of the interphase regions on the concentration of the interphase regions are demonstrated with numerical results.

[1]  G. Odegard,et al.  Constitutive Modeling of Nanotube- Reinforced Polymer Composite Systems , 2001 .

[2]  J. Cui,et al.  The statistical two-order and two-scale method for predicting the mechanics parameters of core-shell particle-filled polymer composites , 2008 .

[3]  Effects of carbon nanotubes on polymer physics , 2012 .

[4]  A. P. Davey,et al.  Observation of site selective binding in a polymer nanotube composite , 2000 .

[5]  N. Nishimura,et al.  Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method , 2005 .

[6]  T. Ogasawara,et al.  Mechanical properties of aligned multi-walled carbon nanotube/epoxy composites processed using a hot-melt prepreg method , 2011 .

[7]  L. Brinson,et al.  Polymer nanocomposites: A small part of the story , 2007 .

[8]  Donald R Paul,et al.  Rheological behavior of multiwalled carbon nanotube/polycarbonate composites , 2002 .

[9]  Dimitris C. Lagoudas,et al.  Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites , 2006 .

[10]  Petra Pötschke,et al.  Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts , 2008 .

[11]  Michael Griebel,et al.  Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces , 2002 .

[12]  Angel Rubio,et al.  Single‐Walled Carbon Nanotube–Polymer Composites: Strength and Weakness , 2000 .

[13]  Michael Griebel,et al.  Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites , 2004 .

[14]  Rikio Yokota,et al.  Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites , 2004 .

[15]  E. Pan,et al.  Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites , 2007 .

[16]  H. Golestanian,et al.  Effects of nanotube helical angle on mechanical properties of carbon nanotube reinforced polymer composites , 2011 .

[17]  Xin-Lin Gao,et al.  A shear-lag model for carbon nanotube-reinforced polymer composites , 2005 .

[18]  A. Yu,et al.  Multiscale modeling and simulation of polymer nanocomposites , 2008 .

[19]  Frank T. Fisher,et al.  Direct Observation of Polymer Sheathing in Carbon Nanotube-Polycarbonate Composites , 2003 .

[20]  J. Coleman,et al.  Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites , 2002 .

[21]  R. Rafiee,et al.  A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites , 2010 .

[22]  G. Heinrich,et al.  Experimental and theoretical studies of agglomeration effects in multi-walled carbon nanotube-polycarbonate melts , 2009 .

[23]  Sidney R. Cohen,et al.  Measurement of carbon nanotube-polymer interfacial strength , 2003 .

[24]  G. N. Labeas,et al.  Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites , 2008 .

[25]  J. Cui,et al.  The statistical second‐order two‐scale method for mechanical properties of statistically inhomogeneous materials , 2010 .

[26]  Tsu-Wei Chou,et al.  Modeling of damage sensing in fiber composites using carbon nanotube networks , 2008 .

[27]  Junzhi Cui,et al.  An effective computer generation method for the composites with random distribution of large numbers of heterogeneous grains , 2008 .

[28]  Babak Ahmadimoghadam Comparison Between Different Finite Element Methods for Foreseeing the Elastic Properties of Carbon nanotube Reinforced Epoxy Resin Composite , 2008 .

[29]  S. R. Bakshi,et al.  Quantification of carbon nanotube distribution and property correlation in nanocomposites , 2009 .

[30]  J. Coleman,et al.  Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling , 2006 .

[31]  L. Gorbatikh,et al.  A model for the compression of a random assembly of carbon nanotubes , 2011 .

[32]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[33]  Lingbo Zhu,et al.  Polymer transcrystallinity induced by carbon nanotubes , 2008 .

[34]  Pol D. Spanos,et al.  A multiscale Monte Carlo finite element method for determining mechanical properties of polymer nanocomposites , 2008 .

[35]  J. Coleman,et al.  Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites , 2006 .

[36]  H. Fukunaga,et al.  Prediction of elastic properties of carbon nanotube reinforced composites , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  Donald W. Brenner,et al.  The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation , 2003 .

[38]  Peter Wriggers,et al.  Introduction to Computational Micromechanics (Lecture Notes in Applied and Computational Mechanics) , 2004 .

[39]  J. Lee,et al.  Effect of chemical functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane on mechanical and morphological properties of epoxy nanocomposites , 2009 .

[40]  William D. Callister,et al.  Materials Science and Engineering: An Introduction , 1985 .

[41]  J. Bai,et al.  Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation , 2003 .

[42]  K. Narh,et al.  The effect of carbon nanotube agglomeration on the thermal and mechanical properties of polyethylene oxide , 2008 .

[43]  Xingang Yu,et al.  The prediction on mechanical properties of 4-step braided composites via two-scale method , 2007 .

[44]  O. Talu,et al.  Heterogeneous adsorption equilibria with comparable molecule and pore sizes , 1989 .

[45]  B. Li,et al.  Dramatic property enhancement in polyetherimide using low-cost commercially functionalized multi-walled carbon nanotubes via a facile solution processing method , 2009, Nanotechnology.

[46]  G. Lubineau,et al.  The effect of bulk-resin CNT-enrichment on damage and plasticity in shear-loaded laminated composites , 2013 .

[47]  M. Zaiser,et al.  Interactions between polymers and carbon nanotubes: a molecular dynamics study. , 2005, The journal of physical chemistry. B.

[48]  Huajian Gao,et al.  The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites , 2004 .

[49]  H. Deng,et al.  Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization , 2012 .

[50]  G. Lubineau,et al.  A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements , 2012 .

[51]  K. Schulte,et al.  Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content , 2004 .

[52]  I. Szleifer,et al.  Control of carbon nanotube-surface interactions: the role of grafted polymers. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[53]  D. Tasis,et al.  Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties , 2010 .

[54]  Y. Kim,et al.  Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method , 2005 .

[55]  Tingying Zeng,et al.  Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices. , 2006, Journal of the American Chemical Society.

[56]  Jang‐Kyo Kim,et al.  Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites , 2010 .

[57]  Eric Verploegen,et al.  Quantitative Characterization of the Morphology of Multiwall Carbon Nanotube Films by Small-Angle X-ray Scattering , 2007 .

[58]  P. Moldenaers,et al.  Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: A critical review , 2010 .

[59]  P. Pissis,et al.  Structure–property relationships in polyamide 6/multi‐walled carbon nanotubes nanocomposites , 2009 .

[60]  M. Cherkaoui,et al.  Fundamentals of Micromechanics of Solids , 2006 .