Mimetic Discretizations of Elliptic Control Problems

We investigate the performance of the Mimetic Finite Difference (MFD) method for the approximation of a constraint optimal control problem governed by an elliptic operator. Low-order and high-order mimetic discretizations are considered and a priori error estimates are derived, in a suitable discrete norm, for both the control and the state variables. A wide class of numerical experiments performed on a set of examples selected from the literature assesses the robustness of the MFD method and confirms the convergence analysis.

[1]  Michael Hinze,et al.  Discrete Concepts in PDE Constrained Optimization , 2009 .

[2]  Gianmarco Manzini,et al.  The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes , 2011, J. Comput. Phys..

[3]  T. Geveci,et al.  On the approximation of the solution of an optimal control problem governed by an elliptic equation , 1979 .

[4]  Michael R. Greenberg,et al.  Chapter 1 – Theory, Methods, and Applications , 1978 .

[5]  HinzeM. A variational discretization concept in control constrained optimization , 2005 .

[6]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[7]  Lourenço Beirão da Veiga,et al.  A mimetic discretization of the Reissner–Mindlin plate bending problem , 2011, Numerische Mathematik.

[8]  Richard S. Falk,et al.  Approximation of a class of optimal control problems with order of convergence estimates , 1973 .

[9]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem , 2002, Comput. Optim. Appl..

[10]  F. Brezzi,et al.  A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .

[11]  Gianmarco Manzini,et al.  Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes , 2010, SIAM J. Numer. Anal..

[12]  Arnd Rösch,et al.  Error estimates for linear-quadratic control problems with control constraints , 2006, Optim. Methods Softw..

[13]  Mikhail Shashkov,et al.  Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes , 2004 .

[14]  Fredi Tröltzsch,et al.  Error estimates for linear-quadratic elliptic control problems , 2002, Analysis and Optimization of Differential Systems.

[15]  Gianmarco Manzini,et al.  Convergence Analysis of the Mimetic Finite Difference Method for Elliptic Problems , 2009, SIAM J. Numer. Anal..

[16]  Gianmarco Manzini,et al.  Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..

[17]  J. David Moulton,et al.  A multilevel multiscale mimetic (M3) method for two-phase flows in porous media , 2008, J. Comput. Phys..

[18]  M. Shashkov,et al.  CONVERGENCE OF MIMETIC FINITE DIFFERENCE METHOD FOR DIFFUSION PROBLEMS ON POLYHEDRAL MESHES WITH CURVED FACES , 2006 .

[19]  R. S. Falk Error estimates for the approximation of a class of variational inequalities , 1974 .

[20]  Konstantin Lipnikov,et al.  A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles , 2010, SIAM J. Sci. Comput..

[21]  Yanping Chen,et al.  Superconvergence of quadratic optimal control problems by triangular mixed finite element methods , 2008 .

[22]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[23]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[24]  Gianmarco Manzini,et al.  An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems , 2008 .

[25]  L. B. D. Veiga,et al.  A Mimetic discretization method for linear elasticity , 2010 .

[26]  K. Kunisch,et al.  Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .

[27]  Stefano Berrone,et al.  A new marking strategy for the adaptive finite element approximation of optimal control constrained problems , 2011, Optim. Methods Softw..

[28]  Annalisa Buffa,et al.  Mimetic finite differences for elliptic problems , 2009 .

[29]  Fabio Nobile,et al.  Time accurate partitioned algorithms for the solution of fluid–structure interaction problems in haemodynamics , 2013 .

[30]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[31]  K. Hoffmann,et al.  Optimal Control of Partial Differential Equations , 1991 .

[32]  Gianmarco Manzini,et al.  Convergence analysis of the high-order mimetic finite difference method , 2009, Numerische Mathematik.

[33]  Ivan Yotov,et al.  Local flux mimetic finite difference methods , 2009, Numerische Mathematik.

[34]  Lourenço Beirão da Veiga,et al.  A mimetic discretization of elliptic obstacle problems , 2013, Math. Comput..

[35]  M. Pachter,et al.  Optimal control of partial differential equations , 1980 .

[36]  Lourenço Beirão da Veiga,et al.  Hierarchical A Posteriori Error Estimators for the Mimetic Discretization of Elliptic Problems , 2013, SIAM J. Numer. Anal..

[37]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[38]  Yunqing Huang,et al.  Error Estimates and Superconvergence of Mixed Finite Element Methods for Convex Optimal Control Problems , 2010, J. Sci. Comput..

[39]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[40]  Yanping Chen,et al.  Higher Order Triangular Mixed Finite Element Methods for Semilinear Quadratic Optimal Control Problems , 2011 .

[41]  P. Philip Optimal Control of Partial Dierential Equations , 2013 .

[42]  Victor G. Ganzha,et al.  Analysis and optimization of inner products for mimetic finite difference methods on a triangular grid , 2004, Math. Comput. Simul..

[43]  Arnd Rösch,et al.  Superconvergence Properties of Optimal Control Problems , 2004, SIAM J. Control. Optim..

[44]  Stefan Wendl,et al.  Optimal Control of Partial Differential Equations , 2021, Applied Mathematical Sciences.