Mimetic Discretizations of Elliptic Control Problems
暂无分享,去创建一个
[1] Michael Hinze,et al. Discrete Concepts in PDE Constrained Optimization , 2009 .
[2] Gianmarco Manzini,et al. The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes , 2011, J. Comput. Phys..
[3] T. Geveci,et al. On the approximation of the solution of an optimal control problem governed by an elliptic equation , 1979 .
[4] Michael R. Greenberg,et al. Chapter 1 – Theory, Methods, and Applications , 1978 .
[5] HinzeM.. A variational discretization concept in control constrained optimization , 2005 .
[6] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .
[7] Lourenço Beirão da Veiga,et al. A mimetic discretization of the Reissner–Mindlin plate bending problem , 2011, Numerische Mathematik.
[8] Richard S. Falk,et al. Approximation of a class of optimal control problems with order of convergence estimates , 1973 .
[9] Fredi Tröltzsch,et al. Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem , 2002, Comput. Optim. Appl..
[10] F. Brezzi,et al. A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .
[11] Gianmarco Manzini,et al. Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes , 2010, SIAM J. Numer. Anal..
[12] Arnd Rösch,et al. Error estimates for linear-quadratic control problems with control constraints , 2006, Optim. Methods Softw..
[13] Mikhail Shashkov,et al. Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes , 2004 .
[14] Fredi Tröltzsch,et al. Error estimates for linear-quadratic elliptic control problems , 2002, Analysis and Optimization of Differential Systems.
[15] Gianmarco Manzini,et al. Convergence Analysis of the Mimetic Finite Difference Method for Elliptic Problems , 2009, SIAM J. Numer. Anal..
[16] Gianmarco Manzini,et al. Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..
[17] J. David Moulton,et al. A multilevel multiscale mimetic (M3) method for two-phase flows in porous media , 2008, J. Comput. Phys..
[18] M. Shashkov,et al. CONVERGENCE OF MIMETIC FINITE DIFFERENCE METHOD FOR DIFFUSION PROBLEMS ON POLYHEDRAL MESHES WITH CURVED FACES , 2006 .
[19] R. S. Falk. Error estimates for the approximation of a class of variational inequalities , 1974 .
[20] Konstantin Lipnikov,et al. A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles , 2010, SIAM J. Sci. Comput..
[21] Yanping Chen,et al. Superconvergence of quadratic optimal control problems by triangular mixed finite element methods , 2008 .
[22] J. Lions. Optimal Control of Systems Governed by Partial Differential Equations , 1971 .
[23] Konstantin Lipnikov,et al. Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..
[24] Gianmarco Manzini,et al. An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems , 2008 .
[25] L. B. D. Veiga,et al. A Mimetic discretization method for linear elasticity , 2010 .
[26] K. Kunisch,et al. Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .
[27] Stefano Berrone,et al. A new marking strategy for the adaptive finite element approximation of optimal control constrained problems , 2011, Optim. Methods Softw..
[28] Annalisa Buffa,et al. Mimetic finite differences for elliptic problems , 2009 .
[29] Fabio Nobile,et al. Time accurate partitioned algorithms for the solution of fluid–structure interaction problems in haemodynamics , 2013 .
[30] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[31] K. Hoffmann,et al. Optimal Control of Partial Differential Equations , 1991 .
[32] Gianmarco Manzini,et al. Convergence analysis of the high-order mimetic finite difference method , 2009, Numerische Mathematik.
[33] Ivan Yotov,et al. Local flux mimetic finite difference methods , 2009, Numerische Mathematik.
[34] Lourenço Beirão da Veiga,et al. A mimetic discretization of elliptic obstacle problems , 2013, Math. Comput..
[35] M. Pachter,et al. Optimal control of partial differential equations , 1980 .
[36] Lourenço Beirão da Veiga,et al. Hierarchical A Posteriori Error Estimators for the Mimetic Discretization of Elliptic Problems , 2013, SIAM J. Numer. Anal..
[37] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[38] Yunqing Huang,et al. Error Estimates and Superconvergence of Mixed Finite Element Methods for Convex Optimal Control Problems , 2010, J. Sci. Comput..
[39] Michael Hinze,et al. A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..
[40] Yanping Chen,et al. Higher Order Triangular Mixed Finite Element Methods for Semilinear Quadratic Optimal Control Problems , 2011 .
[41] P. Philip. Optimal Control of Partial Dierential Equations , 2013 .
[42] Victor G. Ganzha,et al. Analysis and optimization of inner products for mimetic finite difference methods on a triangular grid , 2004, Math. Comput. Simul..
[43] Arnd Rösch,et al. Superconvergence Properties of Optimal Control Problems , 2004, SIAM J. Control. Optim..
[44] Stefan Wendl,et al. Optimal Control of Partial Differential Equations , 2021, Applied Mathematical Sciences.