Enriched Spectral Methods and Applications to Problems with Weakly Singular Solutions

Usual spectral methods are very effective for problems with smooth solutions, but their accuracy will be severely limited if solution of the underlying problems exhibits singular behavior. We develop in this paper enriched spectral-Galerkin methods (ESG) to deal with a class of problems for which the form of leading singular solutions can be determined. Several strategies are developed to overcome the ill conditioning due to the addition of singular functions as basis functions, and to efficiently solve the approximate solution in the enriched space. We validate ESG by solving a variety of elliptic problems with weakly singular solutions.

[1]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[2]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[3]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[4]  A. H. Sherman On Newton-Iterative Methods for the Solution of Systems of Nonlinear Equations , 1978 .

[5]  Ivo Babuška,et al.  The post‐processing approach in the finite element method—Part 2: The calculation of stress intensity factors , 1984 .

[6]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[7]  J. Boyd Chebyshev and Fourier Spectral Methods , 1989 .

[8]  John P. Boyd,et al.  Chebyshev pseudospectral method of viscous flows with corner singularities , 1989 .

[9]  John P. Boyd,et al.  Spectral method solution of the Stokes equations on nonstaggered grids , 1991 .

[10]  Christopher C. Paige,et al.  Loss and Recapture of Orthogonality in the Modified Gram-Schmidt Algorithm , 1992, SIAM J. Matrix Anal. Appl..

[11]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[12]  R. Gorenflo,et al.  Fractional Oscillations And Mittag-Leffler Functions , 1996 .

[13]  Jie Shen,et al.  Efficient Spectral-Galerkin Methods III: Polar and Cylindrical Geometries , 1997, SIAM J. Sci. Comput..

[14]  T. Lu,et al.  Singularities and treatments of elliptic boundary value problems , 2000 .

[15]  R. Peyret,et al.  Computing singular solutions of the Navier–Stokes equations with the Chebyshev‐collocation method , 2001 .

[16]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[17]  Nicola Parolini,et al.  Numerical investigation on the stability of singular driven cavity flow , 2002 .

[18]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[19]  V. Mantič,et al.  Treatment of singularities in Helmholtz-type equations using the boundary element method , 2004 .

[20]  Tzon-Tzer Lu,et al.  Particular solutions of Laplace's equations on polygons and new models involving mild singularities , 2005 .

[21]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[22]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[23]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[24]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[25]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[26]  Louis Dupaigne,et al.  Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations , 2010, 1004.1906.

[27]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[28]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[29]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[30]  Arak M. Mathai,et al.  Mittag-Leffler Functions and Their Applications , 2009, J. Appl. Math..

[31]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[32]  I. Babuska,et al.  Stable Generalized Finite Element Method (SGFEM) , 2011, 1104.0960.

[33]  George E. Karniadakis,et al.  Exponentially accurate spectral and spectral element methods for fractional ODEs , 2014, J. Comput. Phys..

[34]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[35]  Ricardo H. Nochetto,et al.  A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis , 2013, Found. Comput. Math..

[36]  Jie Shen,et al.  Generalized Jacobi functions and their applications to fractional differential equations , 2014, Math. Comput..

[37]  Jie Shen,et al.  Müntz-Galerkin Methods and Applications to Mixed Dirichlet-Neumann Boundary Value Problems , 2016, SIAM J. Sci. Comput..

[38]  Jie Shen,et al.  Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations , 2016 .

[39]  Zhiping Mao,et al.  A Spectral Method (of Exponential Convergence) for Singular Solutions of the Diffusion Equation with General Two-Sided Fractional Derivative , 2018, SIAM J. Numer. Anal..

[40]  Daan Huybrechs,et al.  Frames and numerical approximation , 2016, SIAM Rev..