Task-Optimal Registration Cost Functions

In this paper, we propose a framework for learning the parameters of registration cost functions--such as the tradeoff between the regularization and image similiarity term--with respect to a specific task. Assuming the existence of labeled training data, we specialize the framework for the task of localizing hidden labels via image registration. We learn the parameters of the weighted sum of squared differences (wSSD) image similarity term that are optimal for the localization of Brodmann areas (BAs) in a new subject based on cortical geometry. We demonstrate state-of-the-art localization of V1, V2, BA44 and BA45.

[1]  Guido Gerig,et al.  Medical Image Computing and Computer-Assisted Intervention - MICCAI 2005, 8th International Conference, Palm Springs, CA, USA, October 26-29, 2005, Proceedings, Part II , 2005, MICCAI.

[2]  Lasse Riis Østergaard,et al.  Active Surface Approach for Extraction of the Human Cerebral Cortex from MRI , 2006, MICCAI.

[3]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[4]  Katrin Amunts,et al.  Cortical Folding Patterns and Predicting Cytoarchitecture , 2007, Cerebral cortex.

[5]  Mee Young Park,et al.  L1‐regularization path algorithm for generalized linear models , 2007 .

[6]  Gabor Fichtinger,et al.  Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008, 11th International Conference, New York, NY, USA, September 6-10, 2008, Proceedings, Part I , 2008, International Conference on Medical Image Computing and Computer-Assisted Intervention.

[7]  W. Rudin Principles of mathematical analysis , 1964 .

[8]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[9]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[10]  Mert R. Sabuncu,et al.  Discovering Modes of an Image Population through Mixture Modeling , 2008, MICCAI.

[11]  Christos Davatzikos,et al.  A Joint Transformation and Residual Image Descriptor for Morphometric Image Analysis using an Equivalence Class Formulation , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[12]  Nicholas Ayache,et al.  A Log-Euclidean Framework for Statistics on Diffeomorphisms , 2006, MICCAI.

[13]  Mee Young Park,et al.  L 1-regularization path algorithm for generalized linear models , 2006 .

[14]  Mert R. Sabuncu,et al.  Effects of registration regularization and atlas sharpness on segmentation accuracy , 2008, Medical Image Anal..

[15]  Daniel Rueckert,et al.  Automatic anatomical brain MRI segmentation combining label propagation and decision fusion , 2006, NeuroImage.

[16]  Nicholas Ayache,et al.  Spherical Demons: Fast Surface Registration , 2008, MICCAI.

[17]  Koenraad Van Leemput,et al.  Probabilistic Brain Atlas Encoding Using Bayesian Inference , 2006, MICCAI.

[18]  Tom Vercauteren,et al.  Diffeomorphic demons: Efficient non-parametric image registration , 2009, NeuroImage.

[19]  Y. Amit,et al.  Towards a coherent statistical framework for dense deformable template estimation , 2007 .

[20]  Nicholas Ayache,et al.  Incorporating Statistical Measures of Anatomical Variability in Atlas-to-Subject Registration for Conformal Brain Radiotherapy , 2005, MICCAI.

[21]  Timothy F. Cootes,et al.  A Unified Information-Theoretic Approach to Groupwise Non-rigid Registration and Model Building , 2005, IPMI.