Beyond Pair Potentials in Elemental Transition Metals and Semiconductors

Publisher Summary The chapter presents a review that describes the main approaches to transcending pair potential descriptions of transition metals and semiconductors. The chapter discusses the technologically important materials, because the desire to understand their materials properties has led to a large number of atomistic simulation studies, and, consequently, a great need for simplified energy functionals. At first glance, the bonding mechanisms in these two classes of materials seem to be quite distinct. One naively thinks of metallic atoms as closely packed hard balls with relatively weak attractive forces. In semiconductors, one generally focuses on strong bonds with charge accumulations between the atoms. The open structures of diamond structure semiconductors immediately suggest the presence of strong angular forces; if radial pair forces dominated, one would expect that the energy could be lowered by filling in the holes in the structure, thereby increasing the coordination number. In contrast, the closely packed structures of transition metals are at least consistent with a description based on radial forces. However, to obtain a more sophisticated picture of transition metals, including structural energy differences, the chapter mentions that angular forces are necessary, Furthermore, much of the understanding that has recently been gained of transition metal bonding is also applicable to semiconductors, and is being incorporated in the most recent semiconductor energy functionals.

[1]  G. Ackland,et al.  An improved N-body semi-empirical model for body-centred cubic transition metals , 1987 .

[2]  Marvin L. Cohen,et al.  THEORY OF STATIC STRUCTURAL PROPERTIES, CRYSTAL STABILITY, AND PHASE TRANSFORMATIONS: APPLICATION TO Si AND Ge , 1982 .

[3]  F. Ducastelle,et al.  Moments developments and their application to the electronic charge distribution of d bands , 1970 .

[4]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[5]  R. A. Johnson,et al.  Simple embedded atom method model for fcc and hcp metals , 1988 .

[6]  Car,et al.  Structural, dynamical, and electronic properties of amorphous silicon: An ab initio molecular dynamics study. , 1988, Physical review letters.

[7]  Abell Empirical chemical pseudopotential theory of molecular and metallic bonding. , 1985, Physical review. B, Condensed matter.

[8]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[9]  Manninen Interatomic interactions in solids: An effective-medium approach. , 1986, Physical review. B, Condensed matter.

[10]  Claude M. Penchina,et al.  The physics of amorphous solids , 1983 .

[11]  K. Fuchs A quantum mechanical calculation of the elastic constants of monovalent metals , 1936 .

[12]  F. Gautier,et al.  Segregation and order in binary substitutional alloys—II. Ground state phase stability diagrams , 1987 .

[13]  P. N. Keating,et al.  Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure , 1966 .

[14]  F. Cyrot-Lackmann Sur le calcul de la cohésion et de la tension superficielle des métaux de transition par une méthode de liaisons fortes , 1968 .

[15]  J. Nørskov Covalent effects in the effective-medium theory of chemical binding: Hydrogen heats of solution in the3dmetals , 1982 .

[16]  Carlsson Effective-pair interactions in transition-metal alloys: A supercell total-energy approach. , 1987, Physical review. B, Condensed matter.

[17]  R. Benedek Lattice statics calculations of the surface relaxation in metals , 1978 .

[18]  R. Nieminen,et al.  ABINITIO CALCULATION OF INTER-ATOMIC POTENTIALS AND ELECTRONIC-PROPERTIES OF A SIMPLE METAL-AL , 1981 .

[19]  Critical evaluation of low-order moment expansions for the bonding energy of lattices and defects. , 1985, Physical review. B, Condensed matter.

[20]  George Malcolm Stocks,et al.  Local-environment fluctuations and densities of states in substitutionally disordered alloys , 1984 .

[21]  L. Mead,et al.  Maximum entropy in the problem of moments , 1984 .

[22]  D. Pettifor Theory of energy bands and related properties of 4d transition metals. III. s and d contributions to the equation of state , 1978 .

[23]  Biswas,et al.  New classical models for silicon structural energies. , 1987, Physical review. B, Condensed matter.

[24]  M. Finnis The energy and elastic constants of simple metals in terms of pairwise interactions , 1974 .

[25]  R Collins,et al.  Maximum entropy histograms , 1977 .

[26]  J. Martin,et al.  Extended Cauchy discrepancies: measures of non-central, non-isotropic interactions in crystals , 1978 .

[27]  Broughton,et al.  Phase diagram of silicon by molecular dynamics. , 1987, Physical review. B, Condensed matter.

[28]  Estela Blaisten-Barojas,et al.  Molecular-dynamics simulation of silicon clusters. , 1986, Physical review. B, Condensed matter.

[29]  Y Ohta,et al.  The tight-binding bond model , 1988 .

[30]  Moriarty Density-functional formulation of the generalized pseudopotential theory. III. Transition-metal interatomic potentials. , 1977, Physical review. B, Condensed matter.

[31]  D. Pettifor,et al.  Bond energies and defect forces around a vacancy in BCC transition metals , 1987 .

[32]  J. Ziman,et al.  In: Electrons and Phonons , 1961 .

[33]  J. Nørskov,et al.  Effective-medium theory of chemical binding: Application to chemisorption , 1980 .

[34]  A. Stoneham,et al.  Interatomic potentials in semiconductors and their validity for defect calculations , 1988 .

[35]  Harrison,et al.  Many-body embedded-atom potential for describing the energy and angular distributions of Rh atoms desorbed from ion-bombarded Rh{111} , 1988, Physical review. B, Condensed matter.

[36]  Dodson Many-body surface strain and surface reconstructions in fcc transition metals. , 1988, Physical review letters.

[37]  Parrinello,et al.  Au(100) surface reconstruction. , 1986, Physical review letters.

[38]  V. Heine,et al.  Theory of some physical properties and competing processes in tight-binding bands , 1980 .

[39]  J. Connolly,et al.  Density-functional theory applied to phase transformations in transition-metal alloys , 1983 .

[40]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[41]  Das Sarma S,et al.  Proposed universal interatomic potential for elemental tetrahedrally bonded semiconductors. , 1988, Physical review. B, Condensed matter.

[42]  Abraham,et al.  Molecular-dynamics study of self-interstitials in silicon. , 1987, Physical review. B, Condensed matter.

[43]  Dodson Simulation of Au(100) reconstruction by use of the embedded-atom method. , 1987, Physical review. B, Condensed matter.

[44]  L. Dagens Effective interatomic potentials in strong-scattering open shell metals: application to bonding force in d-band metals , 1986 .

[45]  K. Masuda On the Vibrational Spectra for Atoms at B.C.C. Transition Metal Surfaces: Effects of Surfaces Relaxation and Reconstructionl , 1981 .

[46]  Tersoff,et al.  Glassy quasithermal distribution of local geometries and defects in quenched amorphous silicon. , 1988, Physical review letters.

[47]  V. Heine,et al.  Magnetic, chemical and structural ordering in transition metals , 1983 .

[48]  G. Ackland,et al.  Simple N-body potentials for the noble metals and nickel , 1987 .

[49]  Tománek,et al.  Calculation of magic numbers and the stability of small Si clusters. , 1986, Physical review letters.

[50]  J. Kanamori,et al.  Real Space Approach to the Electronic Structure of Transition Metals , 1981 .

[51]  L. Dagens,et al.  Dispersion relations for noble metals in the resonant model potential , 1979 .

[52]  F. Ducastelle Modules élastiques des métaux de transition , 1970 .

[53]  V. L. Moruzzi,et al.  Calculated electronic properties of metals , 1978 .

[54]  R. Jones,et al.  Ab initio calculation of the phonon frequencies in silicon using small atomic clusters , 1987 .

[55]  M. Lannoo,et al.  Point Defects in Semiconductors II , 1981 .

[56]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[57]  Molecular-dynamics simulation of molecular-beam epitaxial growth of the silicon (100) surface. , 1987, Physical review. B, Condensed matter.

[58]  Marvin L. Cohen,et al.  Microscopic Theory of the Phase Transformation and Lattice Dynamics of Si , 1980 .

[59]  N. Q. Lam,et al.  Calculations of the properties of single and multiple defects in nickel , 1986 .

[60]  C. Matthai,et al.  Relaxed vacancy formation and surface energies in b.c.c. transition metals , 1985 .

[61]  L. Dagens,et al.  Resonant model potential and the phonon frequencies in copper , 1978 .

[62]  R. Yamamoto,et al.  Application of tight-binding type electronic theory to lattice defect problems in transition metals , 1983 .

[63]  J. Phillips,et al.  Covalent Bond in Crystals. I. Elements of a Structural Theory , 1968 .

[64]  Johnson Relationship between defect energies and embedded-atom-method parameters. , 1988, Physical review. B, Condensed matter.

[65]  R. Johnson Empirical potentials and their use in the calculation of energies of point defects in metals , 1973 .

[66]  A. Zunger Electronic Structure of 3d Transition-Atom Impurities in Semiconductors , 1986 .

[67]  R. A. Barker,et al.  Phase transition on Mo(100) and W(100) surfaces , 1977 .

[68]  S. Foiles Reconstruction of fcc (110) surfaces , 1987 .

[69]  S. Erkoç,et al.  Interatomic Potentials with Multi‐Body Interactions , 1988 .

[70]  Johnson,et al.  Analytic nearest-neighbor model for fcc metals. , 1988, Physical review. B, Condensed matter.

[71]  K. Bennemann,et al.  Electronic model for energies, relaxations and reconstruction trends at metal surfaces , 1985 .

[72]  Ove Jepsen,et al.  Explicit, First-Principles Tight-Binding Theory , 1984 .

[73]  M. J. Stott,et al.  Quasiatoms: An approach to atoms in nonuniform electronic systems , 1980 .

[74]  J. Tersoff,et al.  Empirical interatomic potential for silicon with improved elastic properties. , 1988, Physical review. B, Condensed matter.

[75]  R. Rebonato,et al.  A modification of the Finnis-Sinclair potentials for highly deformed and defective transition metals , 1987 .

[76]  W. Tiller,et al.  Computer modeling of Si and SiC surfaces and surface processes relevant to crystal growth from the vapor , 1984 .

[77]  Edward Teller,et al.  Interaction of the van der Waals Type Between Three Atoms , 1943 .

[78]  M. Norgett Interatomic potentials and the simulation of lattice defects: edited by P.C. Gehlen, J.R. Beeler and R.J. Jaffee, Plenum Press, 1972, £18.70. , 1973 .

[79]  Ray,et al.  Amorphous-silicon formation by rapid quenching: A molecular-dynamics study. , 1987, Physical review. B, Condensed matter.

[80]  D. Bacon,et al.  Point-defect and stacking-fault properties in body-centred-cubic metals with n-body interatomic potentials , 1986 .

[81]  J. Moriarty Pseudo Green's Functions and the Pseudopotential Theory of d-Band Metals , 1972 .

[82]  J. R. Ray,et al.  Molecular dynamic calculation of elastic constants of silicon , 1986 .

[83]  J. Moriarty,et al.  Density-functional formulation of the generalized pseudopotential theory. III. Transition-metal interatomic potentials , 1988 .

[84]  L. Dagens The resonant model potential form factor: General theory and application to copper, silver and calcium , 1976 .

[85]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[86]  W. Maysenhölder Lowest-order approximations to relaxation volumes of monovacancies in cubic metals from pair potentials and Finnis-Sinclair potentials , 1986 .

[87]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[88]  R. Johnson Sensitivity of lattice defect calculations for fcc metals to empirically derived interatomic potentials , 1969 .

[89]  W. Tiller,et al.  Free surfaces and multilayer interfaces in the GaAs/AlAs system , 1987 .

[90]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[91]  Y. Nambu,et al.  One-dimensional quark gas , 1982 .

[92]  N. H. March,et al.  Interatomic forces in the b.c.c. transition metals , 1981 .

[93]  Fu,et al.  Frozen-phonon total-energy determination of structural surface phase transitions: W(001). , 1985, Physical review letters.

[94]  D. Pettifor,et al.  The Recursion Method and Its Applications , 1986 .

[95]  F. Stillinger,et al.  Chemical reactions in liquids: Molecular dynamics simulation for sulfur , 1986 .

[96]  Harrison,et al.  Theory of the multicenter bond. , 1986, Physical review. B, Condensed matter.

[97]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[98]  Broughton,et al.  Pulsed melting of silicon (111) and (100) surfaces simulated by molecular dynamics. , 1986, Physical review letters.

[99]  V. Vítek,et al.  Structural multiplicity of ∑ = 5(001) twist boundaries and interpretation of X-ray diffraction from these boundaries , 1986 .

[100]  N. Ashcroft,et al.  Pair potentials from band theory: Application to vacancy-formation energies , 1983 .

[101]  R. A. Johnson,et al.  Relationship between two-body interatomic potentials in a lattice model and elastic constants. II , 1972 .

[102]  Dodson,et al.  Development of a many-body Tersoff-type potential for silicon. , 1987, Physical review. B, Condensed matter.

[103]  Andersen,et al.  Molecular-dynamics simulation of amorphous germanium. , 1986, Physical review. B, Condensed matter.

[104]  Cowley Lattice dynamics of silicon with empirical many-body potentials. , 1988, Physical review letters.

[105]  Mills,et al.  Erratum: Collective excitations of semi-infinite superlattice structures: Surface plasmons, bulk plasmons, and the electron-energy-loss spectrum , 1984, Physical review. B, Condensed matter.

[106]  Walter A. Harrison,et al.  Electronic structure and the properties of solids , 1980 .

[107]  Schuller,et al.  Epitaxial growth of silicon: A molecular-dynamics simulation. , 1987, Physical review. B, Condensed matter.

[108]  G. Ackland,et al.  Validity of the second moment tight-binding model , 1988 .

[109]  F. F. Abraham,et al.  Rapid cooling of silicon (111)-melt interfaces by molecular dynamics , 1986 .

[110]  B. N. Brockhouse,et al.  Pseudopotentials in the theory of metals , 1966 .

[111]  Y Ohta,et al.  Interatomic forces in transition metals , 1988 .

[112]  F. Cyrot-Lackmann On the calculation of surface tension in transition metals , 1969 .

[113]  Raghavachari,et al.  Structure and bonding in small silicon clusters. , 1985, Physical review letters.

[114]  Thermodynamic properties of liquid transition metals , 1986 .

[115]  C. D. Gelatt,et al.  An ab initio pair potential applied to metals , 1980 .

[116]  R. Peierls,et al.  Quantum theory of solids , 1956 .

[117]  C. D. Gelatt,et al.  Renormalized atoms: Cohesion in transition metals , 1977 .

[118]  Cleveland,et al.  Faceting at the silicon (100) crystal-melt interface: Theory and experiment. , 1986, Physical review letters.

[119]  J. Hafner,et al.  Soft-sphere reference system in thermodynamic variational calculations. II: Liquid transition metals , 1988 .

[120]  Foiles,et al.  Application of the embedded-atom method to liquid transition metals. , 1985, Physical review. B, Condensed matter.

[121]  D. Pettifor Theory of the Heats of Formation of Transition-Metal Alloys , 1979 .

[122]  D. Pettifor Theory of the crystal structures of transition metals at absolute zero. , 1970 .

[123]  W. Tiller,et al.  Reconstruction and energetics for surfaces of silicon, diamond and β-SiC , 1985 .

[124]  D. Turnbull,et al.  Solid State Physics : Advances in Research and Applications , 1978 .

[125]  William A. Tiller,et al.  Predictions for the pressure and temperature phase transitions of silicon using a semiempirical potential , 1985 .

[126]  M. Daw,et al.  Application of the embedded atom method to phonons in transition metals , 1985 .

[127]  L. Dagens Effective interatomic forces in liquid metals: General formulation and effective medium approximation , 1984 .

[128]  Kalia,et al.  Fragmentation of silicon microclusters: A molecular-dynamics study. , 1987, Physical review. B, Condensed matter.

[129]  M. Baskes,et al.  Application of the embedded-atom method to covalent materials: A semiempirical potential for silicon. , 1987, Physical review letters.

[130]  R. Shuttleworth The Surface Energies of Inert-gas and Ionic Crystals , 1949 .

[131]  Biswas,et al.  Generation of amorphous-silicon structures with use of molecular-dynamics simulations. , 1987, Physical review. B, Condensed matter.

[132]  W. Moritz,et al.  Multilayer distortion in the reconstructed (110) surface of Au , 1985 .

[133]  R. J. Harrison Comments relating to pair potentials for atomistic simulations at metal interfaces and in bulk , 1984 .

[134]  R. Gordon,et al.  Theory for the Forces between Closed‐Shell Atoms and Molecules , 1972 .

[135]  J. Wills,et al.  Interionic interactions in transition metals , 1983 .

[136]  Roger H. Taylor,et al.  Pair potentials and the bonding energy of d-band metals , 1984 .

[137]  Andrew Zangwill Physics at Surfaces , 1988 .

[138]  C. R. A. Catlow,et al.  Interatomic potentials for oxides , 1988 .

[139]  A. Dalgarno,et al.  The Calculation of Van Der Waals Interactions , 1966 .

[140]  K. Masuda Vacancies and small vacancy clusters in BCC transition metals : calculation of binding energy, atomic relaxation and electronic and vibrational densities of states , 1982 .

[141]  Kane Eo,et al.  Phonon spectra of diamond and zinc-blende semiconductors. , 1985 .

[142]  Michele Parrinello,et al.  Simulation of gold in the glue model , 1988 .

[143]  R Shuttleworth,et al.  The Surface Tension of Solids , 1950 .

[144]  W. Tiller,et al.  Computer simulation of ledge formation and ledge interaction for the silicon (111) free surface , 1987 .

[145]  C. P. Flynn,et al.  Point Defects and Diffusion , 1973 .

[146]  Chen,et al.  Oscillatory surface relaxations in Ni, Al, and their ordered alloys. , 1986, Physical review letters.

[147]  K. Masuda,et al.  Screw-dislocation motion in b.c.c. transition metals model calculation using a tight-binding-type electronic theory , 1981 .

[148]  J. Tersoff,et al.  New empirical model for the structural properties of silicon. , 1986, Physical review letters.

[149]  D. Esterling,et al.  Interatomic potentials from experimental phonon spectra I. Prototypes , 1979 .

[150]  George Rennie jun. Esq. XXVI. Account of experiments made on the strength of materials. In a Letter to Thomas Young, M.D. For. Sec. R.S. With Notes by Mr. T. Tredgold , 1819 .

[151]  Carlsson Ae Unified description of "constant-volume" and "bond-breaking" pair potentials in metals. , 1985 .

[152]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[153]  D. Esterling,et al.  Modified recursion method for an efficient force computation in transition metals , 1987 .

[154]  Garrison,et al.  Dissociative valence force field potential for silicon. , 1986, Physical review. B, Condensed matter.

[155]  L. Dagens Calculation of a resonant model potential for copper, silver, and gold , 1977 .

[156]  M. Rasolt,et al.  Charge densities and interionic potentials in simple metals: Nonlinear effects. I , 1975 .

[157]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[158]  D. Bacon,et al.  The structure of small interstitial clusters in b.c.c. metals modelled with N-body potentials , 1988 .

[159]  Atomistic Monte Carlo calculation of critical layer thickness for coherently strained siliconlike structures , 1986 .

[160]  Foiles,et al.  Order-disorder transition of Au and Pt(110) surfaces: The significance of relaxations and vibrations. , 1987, Physical review letters.

[161]  Landman,et al.  Preparation and melting of amorphous silicon by molecular-dynamics simulations. , 1988, Physical review. B, Condensed matter.

[162]  G. Ackland,et al.  Semi-empirical calculation of solid surface tensions in body-centred cubic transition metals , 1986 .

[163]  N. Q. Lam,et al.  Calculations of the properties of self-interstitials and vacancies in the face-centred cubic metals Cu, Ag and Au , 1983 .

[164]  K. Pandey,et al.  Reconstruction of semiconductor surfaces : buckling, ionicity, and pair-bonded chains , 1982 .

[165]  Jepsen,et al.  Illustration of the linear-muffin-tin-orbital tight-binding representation: Compact orbitals and charge density in Si. , 1986, Physical review. B, Condensed matter.

[166]  L. Dagens The resonant model potential. II. Total energy: Theory and application to copper, silver, gold and calcium , 1977 .

[167]  Jacobsen,et al.  Interatomic interactions in the effective-medium theory. , 1987, Physical review. B, Condensed matter.

[168]  M. Baskes,et al.  Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals , 1983 .

[169]  C. Kittel Introduction to solid state physics , 1954 .

[170]  F. Ducastelle,et al.  Generalized perturbation theory in disordered transitional alloys: Applications to the calculation of ordering energies , 1976 .

[171]  W. Harrison Transition-Metal Pseudopotentials , 1969 .

[172]  Biswas,et al.  Interatomic potentials for silicon structural energies. , 1985, Physical review letters.

[173]  R. Nieminen,et al.  Atoms embedded in an electron gas: Immersion energies , 1981 .

[174]  M. Hove,et al.  Confirmation of the missing-row model with three-layer relaxations for the reconstructed Ir(110)-(1 × 2) surface , 1986 .

[175]  R. Martin Dielectric screening model for lattice vibrations of diamond-structure crystals , 1969 .