Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM

Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation-driven rotation in ATP synthases. DOI: http://dx.doi.org/10.7554/eLife.10180.001

[1]  Sjors H.W. Scheres,et al.  Semi-automated selection of cryo-EM particles in RELION-1.3 , 2015, Journal of structural biology.

[2]  Özkan Yildiz,et al.  High-resolution structure of the rotor ring of a proton-dependent ATP synthase , 2009, Nature Structural &Molecular Biology.

[3]  P. Pedersen,et al.  Mitochondrial ATP Synthase , 2006, Journal of Biological Chemistry.

[4]  M. Runswick,et al.  The affinity purification and characterization of ATP synthase complexes from mitochondria , 2013, Open Biology.

[5]  R. Henderson,et al.  Structure of the mitochondrial ATP synthase by electron cryomicroscopy , 2003, The EMBO journal.

[6]  W. Junge ATP synthase and other motor proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[7]  K. Tani,et al.  Bovine F1Fo ATP synthase monomers bend the lipid bilayer in 2D membrane crystals , 2015, eLife.

[8]  J. Tomich,et al.  Membrane Topography and Near-neighbor Relationships of the Mitochondrial ATP Synthase Subunits e, f, and g* , 1996, The Journal of Biological Chemistry.

[9]  Özkan Yildiz,et al.  Microscopic rotary mechanism of ion translocation in the F(o) complex of ATP synthases. , 2010, Nature chemical biology.

[10]  J. Walker,et al.  Two overlapping genes in bovine mitochondrial DNA encode membrane components of ATP synthase. , 1986, The EMBO journal.

[11]  Dmitry Lyumkis,et al.  Likelihood-based classification of cryo-EM images using FREALIGN. , 2013, Journal of structural biology.

[12]  W. Junge,et al.  ATP synthase: an electrochemical transducer with rotatory mechanics. , 1997, Trends in biochemical sciences.

[13]  W. Lau,et al.  Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase , 2011, Nature.

[14]  A. Leslie,et al.  Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria , 2010, Proceedings of the National Academy of Sciences.

[15]  J. Rubinstein,et al.  Arrangement of subunits in intact mammalian mitochondrial ATP synthase determined by cryo-EM , 2012, Proceedings of the National Academy of Sciences.

[16]  J. Symerský,et al.  Oligomycin frames a common drug-binding site in the ATP synthase , 2012, Proceedings of the National Academy of Sciences.

[17]  W. Kühlbrandt,et al.  Macromolecular organization of ATP synthase and complex I in whole mitochondria , 2011, Proceedings of the National Academy of Sciences.

[18]  D. Baker,et al.  Robust and accurate prediction of residue–residue interactions across protein interfaces using evolutionary information , 2014, eLife.

[19]  S. Ferguson-Miller,et al.  Energy transduction: proton transfer through the respiratory complexes. , 2006, Annual review of biochemistry.

[20]  W. Pearson,et al.  Current Protocols in Bioinformatics , 2002 .

[21]  David Baker,et al.  Protein Structure Prediction Using Rosetta , 2004, Numerical Computer Methods, Part D.

[22]  J. Rubinstein,et al.  Fabrication of carbon films with ∼ 500nm holes for cryo-EM with a direct detector device. , 2014, Journal of structural biology.

[23]  Thomas A. Hopf,et al.  Protein 3D Structure Computed from Evolutionary Sequence Variation , 2011, PloS one.

[24]  M. Runswick,et al.  Association of two proteolipids of unknown function with ATP synthase from bovine heart mitochondria , 2007, FEBS letters.

[25]  Nikolaus Grigorieff,et al.  FREALIGN: high-resolution refinement of single particle structures. , 2007, Journal of structural biology.

[26]  C. Sander,et al.  Correlated Mutations and Residue Contacts , 1994 .

[27]  Karen M. Davies,et al.  Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase , 2015, Nature.

[28]  Thomas A. Hopf,et al.  Three-Dimensional Structures of Membrane Proteins from Genomic Sequencing , 2012, Cell.

[29]  Nikolaus Grigorieff,et al.  Author response: Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6 , 2015 .

[30]  J. Walker The ATP synthase: the understood, the uncertain and the unknown. , 2013, Biochemical Society transactions.

[31]  J. Mccammon,et al.  Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. , 1999, Journal of structural biology.

[32]  Carol V. Robinson,et al.  Ion mobility-mass spectrometry of a rotary ATPase reveals ATP-induced reduction in conformational flexibility. , 2014, Nature chemistry.

[33]  S. Wilkens,et al.  Structure of dimeric mitochondrial ATP synthase: novel F0 bridging features and the structural basis of mitochondrial cristae biogenesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  John L Rubinstein,et al.  The resolution dependence of optimal exposures in liquid nitrogen temperature electron cryomicroscopy of catalase crystals. , 2010, Journal of structural biology.

[35]  Leonardo G. Trabuco,et al.  Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. , 2008, Structure.

[36]  Qing Wang,et al.  Measurement of the molecular masses of hydrophilic and hydrophobic subunits of ATP synthase and complex I in a single experiment. , 2009, Analytical biochemistry.

[37]  A. Leslie,et al.  How the regulatory protein, IF1, inhibits F1-ATPase from bovine mitochondria , 2007, Proceedings of the National Academy of Sciences.

[38]  C. Sander,et al.  Correlated mutations and residue contacts in proteins , 1994, Proteins.

[39]  Marcus A. Brubaker,et al.  Description and comparison of algorithms for correcting anisotropic magnification in cryo-EM images. , 2015, Journal of structural biology.

[40]  John E Walker,et al.  ATP Synthesis by Rotary Catalysis (Nobel lecture). , 1998, Angewandte Chemie.

[41]  G Vriend,et al.  Modeling of transmembrane seven helix bundles. , 1993, Protein engineering.

[42]  W. Kühlbrandt,et al.  Dimer ribbons of ATP synthase shape the inner mitochondrial membrane , 2008, The EMBO journal.

[43]  Bin Tean Teh,et al.  Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer , 2014, eLife.

[44]  Marcus A. Brubaker,et al.  Alignment of cryo-EM movies of individual particles by optimization of image translations. , 2014, Journal of structural biology.

[45]  Samir Benlekbir,et al.  Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase , 2015, Nature.

[46]  N. Grigorieff,et al.  Automatic estimation and correction of anisotropic magnification distortion in electron microscopes. , 2015, Journal of structural biology.

[47]  A. Leslie,et al.  The structure of the membrane extrinsic region of bovine ATP synthase , 2009, Proceedings of the National Academy of Sciences.

[48]  J. Walker,et al.  ATP synthase from bovine mitochondria. The characterization and sequence analysis of two membrane-associated sub-units and of the corresponding cDNAs. , 1987, Journal of molecular biology.

[49]  Thomas D. Goddard,et al.  Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. , 2010, Journal of structural biology.

[50]  P. Boyer The ATP synthase--a splendid molecular machine. , 1997, Annual review of biochemistry.

[51]  Nathan Nelson,et al.  Structural biology. Nature's rotary electromotors. , 2005, Science.

[52]  Conrad C. Huang,et al.  Visualizing density maps with UCSF Chimera. , 2007, Journal of structural biology.

[53]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[54]  D. Baker,et al.  Refinement of protein structures into low-resolution density maps using rosetta. , 2009, Journal of molecular biology.

[55]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in bioinformatics.

[56]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[57]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using Modeller , 2006, Current protocols in bioinformatics.

[58]  Nathan Nelson,et al.  ATP synthase. , 2015, Annual review of biochemistry.

[59]  John L Rubinstein,et al.  Cryo-EM structure of the yeast ATP synthase. , 2008, Journal of molecular biology.

[60]  David T. Jones,et al.  Transmembrane protein topology prediction using support vector machines , 2009, BMC Bioinformatics.

[61]  Nikolaus Grigorieff,et al.  Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6 , 2015, eLife.

[62]  A. Leslie,et al.  On the structure of the stator of the mitochondrial ATP synthase , 2006, The EMBO journal.

[63]  N. Nelson,et al.  Nature's Rotary Electromotors , 2005, Science.

[64]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.