Computation of a Shrinking Interface in a Hele-Shaw Cell

In this paper, we present an adaptive rescaling method for computing a shrinking interface in a Hele-Shaw cell with a time increasing gap width b(t). We focus our study on a one-phase interior Hele...

[1]  A. Zosel,et al.  Adhesion and tack of polymers: Influence of mechanical properties and surface tensions , 1985 .

[2]  T. Hou,et al.  Removing the stiffness from interfacial flows with surface tension , 1994 .

[3]  B. A. Francisa,et al.  Apparatus-specific analysis of fluid adhesion measurements , 2012 .

[4]  Kurtze,et al.  Surface-tension-driven nonlinear instability in viscous fingers. , 1992, Physical review letters.

[5]  G. McKinley,et al.  FILAMENT-STRETCHING RHEOMETRY OF COMPLEX FLUIDS , 2002 .

[6]  Andrew Belmonte,et al.  Fingering instabilities of a reactive micellar interface. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Robert Almgren,et al.  Singularity formation in Hele–Shaw bubbles , 1996 .

[8]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[9]  Rabaud,et al.  Successive bifurcations in directional viscous fingering. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  David Kinderlehrer,et al.  Morphological Stability of a Particle Growing by Diffusion or Heat Flow , 1999 .

[11]  H. Swinney,et al.  Fractal dimension and unscreened angles measured for radial viscous fingering. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  M. Shelley,et al.  Hele - Shaw flow and pattern formation in a time-dependent gap , 1997 .

[13]  Michael Shelley,et al.  Stretch flow of thin layers of Newtonian liquids: Fingering patterns and lifting forces , 2004 .

[14]  Xiaofan Li,et al.  A Boundary Integral Method for Computing the Dynamics of an Epitaxial Island , 2011, SIAM J. Sci. Comput..

[15]  Goldenfeld,et al.  Formation of a dense branching morphology in interfacial growth. , 1986, Physical review letters.

[16]  Anne Greenbaum,et al.  Laplace's equation and the Dirichlet-Neumann map in multiply connected domains , 1991 .

[17]  Scott W McCue,et al.  A curve shortening flow rule for closed embedded plane curves with a prescribed rate of change in enclosed area , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Michael Siegel,et al.  Singular effects of surface tension in evolving Hele-Shaw flows , 1996, Journal of Fluid Mechanics.

[19]  Vittorio Cristini,et al.  Nonlinear theory of self-similar crystal growth and melting , 2004 .

[20]  J. W. McLean,et al.  The effect of surface tension on the shape of fingers in a Hele Shaw cell , 1981, Journal of Fluid Mechanics.

[21]  José A Miranda,et al.  Controlling fingering instabilities in nonflat Hele-Shaw geometries. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  S. Tarafdar,et al.  Adhesion and fingering in the lifting Hele-Shaw cell: Role of the substrate , 2008, The European physical journal. E, Soft matter.

[23]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[24]  Martine Ben Amar,et al.  Fingering instabilities in adhesive failure , 2005 .

[25]  Thomas Y. Hou,et al.  Boundary integral methods for multicomponent fluids and multiphase materials , 2001 .

[26]  Suparna Sinha,et al.  Viscous Fingering Patterns and Evolution of Their Fractal Dimension , 2009 .

[27]  Anke Lindner,et al.  Dynamic evolution of fingering patterns in a lifted Hele–Shaw cell , 2011 .

[28]  G. Taylor,et al.  The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  Meng Zhao,et al.  Nonlinear simulations of elastic fingering in a Hele-Shaw cell , 2016, J. Comput. Appl. Math..

[30]  J. Miranda,et al.  Determining the number of fingers in the lifting Hele-Shaw problem. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Hamed Lakrout,et al.  Direct Observation of Cavitation and Fibrillation in a Probe Tack Experiment on Model Acrylic Pressure-Sensitive-Adhesives , 1999 .

[32]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[33]  José A Miranda,et al.  Elastic fingering in rotating Hele-Shaw flows. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  John S. Lowengrub,et al.  Modeling an Elastic Fingering Instability in a Reactive Hele-Shaw Flow , 2012, SIAM J. Appl. Math..

[35]  Ching-Yao Chen,et al.  Numerical study of miscible fingering in a time-dependent gap Hele-Shaw cell. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Scott W. McCue,et al.  Bubble extinction in Hele-Shaw flow with surface tension and kinetic undercooling regularization , 2013 .

[37]  John S. Lowengrub,et al.  A rescaling scheme with application to the long-time simulation of viscous fingering in a Hele-Shaw cell , 2007, J. Comput. Phys..

[38]  Sheldon B. Gorell,et al.  Two-phase displacement in Hele-Shaw cells: experiments on viscously driven instabilities , 1984, Journal of Fluid Mechanics.

[39]  Kadanoff,et al.  Finite-time singularity formation in Hele-Shaw systems. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  P. van Meurs,et al.  The Instability of Slow, Immiscible, Viscous Liquid-Liquid Displacements in Permeable Media , 1959 .

[41]  Thomas Y. Hou,et al.  The long-time motion of vortex sheets with surface tension , 1997 .

[42]  S. Goldstein Modern developments in fluid dynamics , 1938 .

[43]  O. Pla,et al.  Linear stability analysis of the Hele-Shaw cell with lifting plates , 1996, cond-mat/9610103.

[44]  Peter Palffy-Muhoray,et al.  Control of viscous fingering patterns in a radial Hele-Shaw cell. , 2009, Physical review letters.

[45]  Meng Zhao,et al.  An Efficient Adaptive Rescaling Scheme for Computing Moving Interface Problems , 2017 .

[46]  Andrejs Cebers,et al.  Magnetic fluid labyrinthine instability in Hele-Shaw cell with time dependent gap , 2008 .

[47]  J. Miranda,et al.  Taper-induced control of viscous fingering in variable-gap Hele-Shaw flows. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Constantin,et al.  Droplet breakup in a model of the Hele-Shaw cell. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[49]  Anke Lindner,et al.  Cohesive failure of thin layers of soft model adhesives under tension , 2003 .

[50]  J. Miranda,et al.  Control of radial fingering patterns: a weakly nonlinear approach. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  F. Nallet,et al.  Cavitation-induced force transition in confined viscous liquids under traction , 2002, cond-mat/0210064.