High-Order Relaxation Schemes for Nonlinear Degenerate Diffusion Problems

Several relaxation approximations to partial differential equations have been recently proposed. Examples include conservation laws, Hamilton-Jacobi equations, convection-diffusion problems, and gas dynamics problems. The present paper focuses on diffusive relaxation schemes for the numerical approximation of nonlinear parabolic equations. These schemes are based on a suitable semilinear hyperbolic system with relaxation terms. High-order methods are obtained by coupling ENO and weighted essentially nonoscillatory (WENO) schemes for space discretization with implicit-explicit (IMEX) schemes for time integration. Error estimates and a convergence analysis are developed for semidiscrete schemes with a numerical analysis for fully discrete relaxed schemes. Various numerical results in one and two dimensions illustrate the high accuracy and good properties of the proposed numerical schemes, also in the degenerate case. These schemes can be easily implemented on parallel computers and applied to more general systems of nonlinear parabolic equations in two- and three-dimensional cases.

[1]  Roberto Natalini,et al.  Convergence of diffusive BGK approximations for nonlinear strongly parabolic systems , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[2]  Matteo Semplice,et al.  High order relaxed schemes for nonlinear reaction diffusion problems , 2006 .

[3]  J. Kacur,et al.  solution of nonlinear diffusion problems by linear approximation schemes , 1993 .

[4]  Shi Jin Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1995 .

[5]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[6]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[7]  Pierre-Louis Lions,et al.  Diffusive limit for finite velocity Boltzmann kinetic models , 1997 .

[8]  Roberto Natalini,et al.  Discrete Kinetic Schemes for Multidimensional Systems of Conservation Laws , 2000, SIAM J. Numer. Anal..

[9]  B. Perthame,et al.  Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics , 1998 .

[10]  H. Brezis,et al.  Convergence and approximation of semigroups of nonlinear operators in Banach spaces , 1972 .

[11]  R. Natalini,et al.  Diffusive BGK approximations for nonlinear multidimensional parabolic equations , 2000 .

[12]  Willi Jäger,et al.  Solution of porous medium type systems by linear approximation schemes , 1991 .

[13]  Ricardo H. Nochetto,et al.  Approximation of Degenerate Parabolic Problems Using Numerical Integration , 1988 .

[14]  Gabriella Puppo,et al.  Increasing Efficiency Through Optimal RK Time Integration of Diffusion Equations , 2006 .

[15]  Avner Friedman,et al.  Mildly nonlinear parabolic equations with application to flow of gases through porous media , 1960 .

[16]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[17]  G. Russo,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .

[18]  Lorenzo Pareschi,et al.  Diffusive Relaxation Schemes for Multiscale Discrete-Velocity Kinetic Equations , 1998 .

[19]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[20]  Ricardo H. Nochetto,et al.  Energy error estimates for a linear scheme to approximate nonlinear parabolic problems , 1987 .

[21]  H. Brezis,et al.  A numerical method for solving the problem u t - Δ f ( u ) = 0 , 2009 .

[22]  B G.I.,et al.  Nonlinear diffusion and image contour enhancement , 2004 .

[23]  Haim Brezis,et al.  A numerical method for solving the problem $u_t - \Delta f (u) = 0$ , 1979 .

[24]  Wen-An Yong,et al.  A numerical approach to degenerate parabolic equations , 2002, Numerische Mathematik.

[25]  C. D. Levermore,et al.  Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .

[26]  Giuseppe Toscani,et al.  Relaxation schemes for partial differential equations and applications to degenerate diffusion problems , 2002 .

[27]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[28]  K. Karlsen,et al.  Numerical solution of reservoir flow models based on large time step operator splitting algorithms , 2000 .

[29]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[30]  Z. Xin,et al.  Relaxation schemes for curvature-dependent front propagation , 1999 .

[31]  Shaoqiang Tang,et al.  Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems , 2004, Math. Comput..

[32]  Steinar Evje,et al.  Viscous splitting approximation of mixed hyperbolic-parabolic convection-diffusion equations , 1999, Numerische Mathematik.

[33]  P. Jamet,et al.  A Finite Difference Approach to Some Degenerate Nonlinear Parabolic Equations , 1971 .

[34]  J. Vázquez An Introduction to the Mathematical Theory of the Porous Medium Equation , 1992 .

[35]  Ricardo H. Nochetto,et al.  A posteriori error estimation and adaptivity for degenerate parabolic problems , 2000, Math. Comput..

[36]  Shi Jin,et al.  Regularization of the Burnett equations for rapid granular flows via relaxation , 2001 .

[37]  D. Aronson,et al.  Regularity Properties of Flows Through Porous Media: A Counterexample , 1970 .

[38]  Gabriella Puppo,et al.  A comparison between relaxation and Kurganov-Tadmor schemes , 2006 .

[39]  Lorenzo Pareschi,et al.  Numerical Schemes for Hyperbolic Systems of Conservation Laws with Stiff Diffusive Relaxation , 2000, SIAM J. Numer. Anal..

[40]  Michael G. Crandall,et al.  GENERATION OF SEMI-GROUPS OF NONLINEAR TRANSFORMATIONS ON GENERAL BANACH SPACES, , 1971 .

[41]  Matteo Semplice,et al.  Parallel Algorithms for Nonlinear Diffusion by Using Relaxation Approximation , 2006 .

[42]  Lorenzo Pareschi,et al.  Numerical schemes for kinetic equations in diffusive regimes , 1998 .