Metal-Insulator Transitions and non-Fermi Liquid Behaviors in 5d Perovskite Iridates

Transition metal oxides, in particular, 3d or 4d perovskites have provided diverse emergent physics that originates from the coupling of various degrees of freedom such as spin, lattice, charge, orbital, and also disorder. 5d perovskites form a distinct class because they have strong spin-orbit coupling that introduces to the system an additional energy scale that is comparable to bandwidth and Coulomb correlation. Consequent new physics includes novel Jeff = 1/2 Mott insulators, metal-insulator transitions, spin liquids, and topological insulators. After highlighting some of the phenomena appearing in Ruddlesden-Popper iridate series Srn+1IrnO3n+1, we focus on the transport properties of perovskite SrIrO3. Using epitaxial thin films on various substrates, we demonstrate that metal-insulator transitions can be induced in perovskite SrIrO3 by reducing its thickness or by imposing compressive strain. The metal-insulator transition driven by thickness reduction is due to disorder, but the metal-insulator transition driven by compressive strain is accompanied by peculiar non-Fermi liquid behaviors, possibly due to the delicate interplay between correlation, disorder, and spin-orbit coupling. We examine various theoretical frameworks to understand the non-Fermi liquid physics and metal-insulator transition that occurs in SrIrO3 and offer the Mott-Anderson-Griffiths scenario as a possible solution.

[1]  Sang-Wook Cheong,et al.  Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS2 , 2015, Nature Communications.

[2]  J. Goodenough,et al.  Electrically tunable transport in the antiferromagnetic Mott insulator Sr2IrO4 , 2015, 1502.07982.

[3]  R. Ramesh,et al.  Giant reversible nanoscale piezoresistance at room temperature in Sr2IrO4 thin films. , 2015, Nanoscale.

[4]  C. Fennie,et al.  Interplay of spin-orbit interactions, dimensionality, and octahedral rotations in semimetallic SrIrO(3). , 2015, Physical review letters.

[5]  H. Kee,et al.  Topological crystalline metal in orthorhombic perovskite iridates , 2014, Nature Communications.

[6]  A. Millis,et al.  Colloquium: Emergent properties in plane view: Strong correlations at oxide interfaces , 2014 .

[7]  Jungho Kim,et al.  Excitonic quasiparticles in a spin–orbit Mott insulator , 2014, Nature Communications.

[8]  C. Ahn,et al.  Correlated Oxide Physics and Electronics , 2014 .

[9]  A. Bostwick,et al.  Fermi arcs in a doped pseudospin-1/2 Heisenberg antiferromagnet , 2014, Science.

[10]  Shantao Zhang,et al.  Tunable semimetallic state in compressive-strained SrIr O 3 films revealed by transport behavior , 2014, 1406.3878.

[11]  M. Avdeev,et al.  Anomalous thermal expansion in orthorhombic perovskite SrIrO3: Interplay between spin-orbit coupling and the crystal lattice , 2014 .

[12]  Reinhard Uecker,et al.  Elastic strain engineering of ferroic oxides , 2014 .

[13]  J. Goodenough Perspective on engineering transition-metal oxides , 2014 .

[14]  J. Levy,et al.  Nanoscale Phenomena in Oxide Heterostructures , 2014, 1401.1772.

[15]  D. Cho,et al.  Phonon-assisted optical excitation in the narrow bandgap Mott insulator Sr3Ir2O7 , 2014, 1401.1325.

[16]  J. Brink,et al.  Tuning magnetic coupling in Sr2IrO4 thin films with epitaxial strain. , 2013, Physical review letters.

[17]  A. Biswas,et al.  Metal insulator transitions in perovskite SrIrO3 thin films , 2013, 1312.2716.

[18]  G. Rijnders,et al.  Functional oxide interfaces , 2013 .

[19]  Stephen D. Wilson,et al.  Imaging the evolution of metallic states in a correlated iridate. , 2013, Nature materials.

[20]  Yong Baek Kim,et al.  Correlated Quantum Phenomena in the Strong Spin-Orbit Regime , 2013, 1305.2193.

[21]  B. J. Kim,et al.  Persistent non-metallic behavior in Sr2IrO4 and Sr3Ir2O7 at high pressures , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  J. Nichols,et al.  Tuning electronic structure via epitaxial strain in Sr2IrO4 thin films , 2013, 1302.0918.

[23]  Thomas Vojta,et al.  Phases and phase transitions in disordered quantum systems , 2013, 1301.7746.

[24]  H. Terletska,et al.  Finite-temperature crossover and the quantum Widom line near the Mott transition , 2012, 1210.7201.

[25]  B. J. Kim,et al.  Large spin-wave energy gap in the bilayer iridate Sr3Ir2O7: evidence for enhanced dipolar interactions near the mott metal-insulator transition. , 2012, Physical review letters.

[26]  N. Trivedi,et al.  Conductor Insulator Quantum Phase Transitions , 2012 .

[27]  X. Wan,et al.  Spin-orbit tuned metal-insulator transitions in single-crystal Sr2Ir1−xRhxO4(0≤x≤1) , 2012, 1207.1714.

[28]  H. Kee,et al.  Interplay between spin-orbit coupling and Hubbard interaction in SrIrO 3 and related Pbnm perovskite oxides , 2012, 1206.5836.

[29]  B. J. Kim,et al.  Dimensionality driven spin-flop transition in layered iridates. , 2012, Physical review letters.

[30]  H. Kee,et al.  Semimetal and Topological Insulator in Perovskite Iridates , 2011, 1112.0015.

[31]  O. Korneta,et al.  Lattice-driven magnetoresistivity and metal-insulator transition in single-layered iridates , 2011, 1106.2381.

[32]  Philippe Ghosez,et al.  Interface Physics in Complex Oxide Heterostructures , 2011 .

[33]  L. Martin,et al.  Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films , 2010 .

[34]  Satoshi Okamoto,et al.  Dimensional-crossover-driven metal-insulator transition in SrVO3 ultrathin films. , 2010, Physical review letters.

[35]  D. Wiersma,et al.  Fifty years of Anderson localization , 2009 .

[36]  S. Sakai,et al.  Phase-Sensitive Observation of a Spin-Orbital Mott State in Sr2IrO4 , 2009, Science.

[37]  Darrell G. Schlom,et al.  A Thin Film Approach to Engineering Functionality into Oxides , 2008 .

[38]  M. Johnsson,et al.  Perovskites and thin films—crystallography and chemistry , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  R. Yu,et al.  High-pressure synthesis of orthorhombic SrIrO3 perovskite and its positive magnetoresistance , 2008 .

[40]  Jaejun Yu,et al.  Novel Jeff=1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. , 2008, Physical review letters.

[41]  S. Cheong Transition metal oxides: the exciting world of orbitals. , 2007, Nature materials.

[42]  G. Cao,et al.  Non-Fermi-liquid behavior in nearly ferromagnetic SrIrO3 single crystals , 2007, 0706.4319.

[43]  T. Klapwijk,et al.  Flow diagram of the metal-insulator transition in two dimensions , 2006, cond-mat/0609181.

[44]  M. Vojta,et al.  Fermi-liquid instabilities at magnetic quantum phase transitions , 2006, cond-mat/0606317.

[45]  Ki-Seok Kim Role of disorder in the Mott-Hubbard transition , 2006, cond-mat/0601326.

[46]  E. Dagotto Complexity in Strongly Correlated Electronic Systems , 2005, Science.

[47]  V. Dobrosavljević,et al.  Disorder-driven non-Fermi liquid behaviour of correlated electrons , 2005, cond-mat/0504411.

[48]  K. Byczuk Metal-insulator transitions in the Falicov-Kimball model with disorder , 2004, cond-mat/0412590.

[49]  N. Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[50]  A. Georges,et al.  Slave-rotor mean-field theories of strongly correlated systems and the Mott transition in finite dimensions , 2004, cond-mat/0404334.

[51]  H. Takagi,et al.  Universality of the Mott–Ioffe–Regel limit in metals , 2004, cond-mat/0404263.

[52]  Yoshinori Tokura,et al.  Correlated-electron physics in transition-metal oxides , 2003 .

[53]  M. Calandra,et al.  Colloquium : Saturation of electrical resistivity , 2003, cond-mat/0305412.

[54]  T. M. Rice,et al.  Metal‐Insulator Transitions , 2003 .

[55]  M. Crawford,et al.  Anomalous magnetic and transport behavior in the magnetic insulator Sr 3 Ir 2 O 7 , 2002 .

[56]  Rustum Roy,et al.  The perovskite structure – a review of its role in ceramic science and technology , 2000 .

[57]  Y. Tokura,et al.  Orbital physics in transition-metal oxides , 2000, Science.

[58]  Gang Cao,et al.  Weak ferromagnetism, metal-to-nonmetal transition, and negative differential resistivity in single-crystal Sr 2 IrO 4 , 1998 .

[59]  B. Raveau,et al.  Transition Metal Oxides: Structure, Properties, and Synthesis of Ceramic Oxides , 1998 .

[60]  R. Johnston,et al.  The metal–insulator transition: a perspective , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[61]  F. Gebhard,et al.  The Mott Metal-Insulator Transition: Models and Methods , 1997 .

[62]  R. Harlow,et al.  Single crystal structure determination of double layered strontium iridium oxide [Sr3Ir2O7] , 1994 .

[63]  Wang,et al.  Structural and magnetic studies of Sr2IrO4. , 1994, Physical review. B, Condensed matter.

[64]  A. Jacobson,et al.  Interlayer Chemistry Between Thick Transition‐Metal Oxide Layers: Synthesis and Intercalation Reactions of K[Ca2Nan‐3NbnO3n+1] (3 ⩽ n ⩽ 7). , 1986 .

[65]  R. Bhatt,et al.  Scaling Studies of Highly Disordered Spin-½ Antiferromagnetic Systems , 1982 .

[66]  M. Dion,et al.  Nouvelles familles de phases MIMII2Nb3O10 a feuillets “perovskites” , 1981 .

[67]  L. Schäfer,et al.  Disordered system withn orbitals per site: Lagrange formulation, hyperbolic symmetry, and goldstone modes , 1980 .

[68]  D. Osheroff,et al.  Nonmetallic Conduction in Thin Metal Films at Low Temperatures , 1979 .

[69]  F. Wegner The mobility edge problem: Continuous symmetry and a conjecture , 1979 .

[70]  C. A. Murray,et al.  Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions , 1979 .

[71]  D. Thouless,et al.  Constancy of Minimum Metallic Conductivity in Two Dimensions , 1975 .

[72]  A. B. Harris,et al.  Nature of the "Griffiths" Singularity in Dilute Magnets , 1975 .

[73]  N. Mott Conduction in non-crystalline systems IX. the minimum metallic conductivity , 1972 .

[74]  C. Graham,et al.  Introduction to Magnetic Materials , 1972 .

[75]  Robert B. Griffiths,et al.  Nonanalytic Behavior Above the Critical Point in a Random Ising Ferromagnet , 1969 .

[76]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[77]  S. N. Ruddlesden,et al.  New compounds of the K2NIF4 type , 1957 .

[78]  K. Yosida,et al.  Magnetic Properties of Cu-Mn Alloys , 1957 .

[79]  T. Kasuya,et al.  A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model , 1956 .

[80]  C. Kittel,et al.  INDIRECT EXCHANGE COUPLING OF NUCLEAR MAGNETIC MOMENTS BY CONDUCTION ELECTRONS , 1954 .

[81]  John C. Slater,et al.  Magnetic Effects and the Hartree-Fock Equation , 1951 .

[82]  E. Verwey,et al.  Semi-conductors with partially and with completely filled3d-lattice bands , 1937 .

[83]  N. Mott,et al.  Discussion of the paper by de Boer and Verwey , 1937 .

[84]  A. Sommerfeld,et al.  Zur Elektronentheorie der Metalle , 2005, Naturwissenschaften.

[85]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[86]  Frank Wannemaker,et al.  Frontiers Of 4d And 5d Transition Metal Oxides , 2016 .

[87]  Piyali J. Chakravorty Strongly Correlated Materials: Insights from Dynamical MeanField Theory , 2014 .

[88]  B. M. Wojek,et al.  The Jeff = 1/2 insulator Sr3Ir2O7 studied by means of angle-resolved photoemission spectroscopy. , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[89]  S. J. Moon,et al.  Dimensionality-Controlled Insulator-Metal Transition and Correlated Metallic State in 5 d Transition Metal Oxides Sr n þ 1 Ir n O 3 n þ 1 ( n ¼ 1 , 2, and 1 ) , 2008 .

[90]  前川 禎通 Physics of transition metal oxides , 2004 .

[91]  A. M. Finkelʹstein Electron liquid in disordered conductors , 1990 .

[92]  S. N. Ruddlesden,et al.  The compound Sr3Ti2O7 and its structure , 1958 .