Geometric auxetics

We formulate a mathematical theory of auxetic behaviour based on one-parameter deformations of periodic frameworks. Our approach is purely geome- tric, relies on the evolution of the periodicity lattice and works in any dimension. We demonstrate its usefulness by predicting or recognizing, without experiment, computer simulations or numerical approximations, the auxetic capabilities of several well-known structures available in the literature. We propose new principles of auxetic design and rely on the stronger notion of expansive behaviour to provide an infinite supply of planar auxetic mechanisms and several new three-dimensional structures.

[1]  T.,et al.  Theory of displacive phase transitions in minerals , 2005 .

[2]  Ileana Streinu,et al.  Kinematics of Expansive Planar Periodic Mechanisms , 2014 .

[3]  Cynthia Vinzant,et al.  What is... a spectrahedron , 2014 .

[4]  Juan Carlos,et al.  Comparative study of auxetic geometries by means of computer-aided design and engineering , 2012 .

[5]  Peter M. Gruber Geometry of the cone of positive quadratic forms , 2009 .

[6]  Robert Almgren,et al.  An isotropic three-dimensional structure with Poisson's ratio =−1 , 1985 .

[7]  James Clerk Maxwell,et al.  I.—On Reciprocal Figures, Frames, and Diagrams of Forces , 2022, Transactions of the Royal Society of Edinburgh.

[8]  Ileana Streinu,et al.  Deforming Diamond , 2015, ArXiv.

[9]  K. E. EVANS,et al.  Molecular network design , 1991, Nature.

[10]  G. Milton Composite materials with poisson's ratios close to — 1 , 1992 .

[11]  G. Greaves,et al.  Poisson's ratio over two centuries: challenging hypotheses , 2012, Notes and Records of the Royal Society.

[12]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[13]  Ruben Gatt,et al.  On the auxetic properties of generic rotating rigid triangles , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Ruben Gatt,et al.  Three-dimensional cellular structures with negative Poisson's ratio and negative compressibility properties , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Bernd Sturmfels,et al.  Quartic spectrahedra , 2013, Math. Program..

[16]  Ileana Streinu,et al.  A combinatorial approach to planar non-colliding robot arm motion planning , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[17]  Ileana Streinu,et al.  Minimally rigid periodic graphs , 2011 .

[18]  Joseph N. Grima,et al.  Auxetic behaviour from rotating rigid units , 2005 .

[19]  R. E. Gibbs,et al.  The polymorphism of silicon dioxide and the structure of tridymite , 1926 .

[20]  David H. Templeton,et al.  Crystal structures: A working approach , 1973 .

[21]  Michael Stingl,et al.  Finding Auxetic Frameworks in Periodic Tessellations , 2011, Advanced materials.

[22]  James R. Chelikowsky,et al.  Negative Poisson ratios in crystalline SiO2 from first-principles calculations , 1992, Nature.

[23]  G. Dolino,et al.  The α-inc-β transitions of quartz: A century of research on displacive phase transitions , 1990 .

[24]  Ileana Streinu,et al.  Expansive periodic mechanisms , 2015 .

[25]  Armand Borel,et al.  Henri Poincaré and Special Relativity , 2001 .

[26]  Leonid Khachiyan,et al.  On the Complexity of Semidefinite Programs , 1997, J. Glob. Optim..

[27]  D. Taylor,et al.  The thermal expansion behaviour of the framework silicates , 1972, Mineralogical Magazine.

[28]  B. Dorner,et al.  On the mechanism of the α-β phase transformation of quartz , 1974 .

[29]  K. Mecke,et al.  Finite auxetic deformations of plane tessellations , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  R. Lakes,et al.  Poisson's ratio and modern materials , 2011, Nature Materials.

[31]  P’ei-Hsiu Wei,et al.  The Structure of a-Quartz , 1935 .

[32]  Carolin Körner,et al.  A systematic approach to identify cellular auxetic materials , 2015 .

[33]  Thomas H. Parker,et al.  What is π , 1991 .

[34]  Andrew N. Norris,et al.  Poisson's ratio in cubic materials , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  Eva Gregorová,et al.  ELASTIC PROPERTIES OF SILICA POLYMORPHS – A REVIEW , 2013 .

[36]  Alexander G. Kolpakov,et al.  Determination of the average characteristics of elastic frameworks , 1985 .

[37]  Ray H. Baughman,et al.  Auxetic materials: Avoiding the shrink , 2003, Nature.

[38]  Ciprian S. Borcea Symmetries of the positive semidefinite cone , 2011 .

[39]  R. Baughman,et al.  Negative Poisson's ratios as a common feature of cubic metals , 1998, Nature.

[40]  Ileana Streinu Erratum to "Pseudo-Triangulations, Rigidity and Motion Planning" , 2006, Discret. Comput. Geom..

[41]  R. Lakes,et al.  Properties of a chiral honeycomb with a poisson's ratio of — 1 , 1997 .

[42]  Xiaoming Mao,et al.  Surface phonons, elastic response, and conformal invariance in twisted kagome lattices , 2011, Proceedings of the National Academy of Sciences.

[43]  J. Maxwell,et al.  I.—On Reciprocal Figures, Frames, and Diagrams of Forces , 1870, Transactions of the Royal Society of Edinburgh.

[44]  Ciprian S. Borcea,et al.  Periodic frameworks and flexibility , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  L. Pauling,et al.  THE STRUCTURE OF SOME SODIUM AND CALCIUM ALUMINOSILICATES. , 1930, Proceedings of the National Academy of Sciences of the United States of America.

[46]  W. Bragg,et al.  The structure of α and β quartz , 1925 .

[47]  K E Evans,et al.  Deformation mechanisms leading to auxetic behaviour in the α-cristobalite and α-quartz structures of both silica and germania , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  G. Milton,et al.  Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots , 2012, 1205.6213.

[49]  Ileana Streinu,et al.  Liftings and Stresses for Planar Periodic Frameworks , 2014, Discret. Comput. Geom..

[50]  S. D. Guest,et al.  Symmetry detection of auxetic behaviour in 2D frameworks , 2013, 1305.5752.

[51]  J. Parise,et al.  Elasticity of α-Cristobalite: A Silicon Dioxide with a Negative Poisson's Ratio , 1992, Science.

[52]  L. Wheeler,et al.  Extreme Poisson's ratios and related elastic crystal properties , 2006 .

[53]  Konstantin V. Tretiakov,et al.  Negative Poisson's ratio of two-dimensional hard cyclic tetramers , 2009 .

[54]  Ileana Streinu,et al.  Frameworks with crystallographic symmetry , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[55]  Joseph N. Grima,et al.  Novel honeycombs with auxetic behaviour , 2005 .

[56]  Tungyang Chen,et al.  Poisson's ratio for anisotropic elastic materials can have no bounds , 2005 .

[57]  E. Cunningham,et al.  The Principle of Relativity , 1914, Nature.

[58]  Branko Grünbaum,et al.  Tilings by Regular Polygons , 1977 .

[59]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.