A genetic-based framework for solving (multi-criteria) weighted matching problems

Abstract The purpose of this paper is to present a flexible genetic-based framework for solving the multi-criteria weighted matching problem (mc-WMP). In the first part of this paper, we design a genetic-based framework for solving the ordinary weighted matching problem. We present an extensive analysis of the quality of the results and introduce a methodology for tuning its parameters. In the second part, we develop a modified genetic-based algorithm for solving the mc-WMP. The algorithm generates a significant and representative portion of the Pareto optimal set. To assess the performance of the algorithm, we conduct computational experiments with two and three criteria. The potential of the proposed algorithm is demonstrated by comparing to a multi-objective simulated annealing algorithm.

[1]  Viggo Kann,et al.  Maximum Bounded 3-Dimensional Matching is MAX SNP-Complete , 1991, Inf. Process. Lett..

[2]  Joseph F. Pekny,et al.  A Staged Primal-Dual Algorithm for Perfect b-Matching with Edge Capacities , 1995, INFORMS J. Comput..

[3]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[4]  Zvi Galil,et al.  Efficient implementation of graph algorithms using contraction , 1984, JACM.

[5]  Hans-Paul Schwefel,et al.  Parallel Problem Solving from Nature — PPSN IV , 1996, Lecture Notes in Computer Science.

[6]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[7]  Mitsuo Gen,et al.  A spanning tree-based genetic algorithm for bicriteria topological network design , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[8]  Thomas Bäck,et al.  Extended Selection Mechanisms in Genetic Algorithms , 1991, ICGA.

[9]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[10]  Lawrence Bodin,et al.  A Matching Based Heuristic for Scheduling Mass Transit Crews and Vehicles , 1983 .

[11]  Ulrich Derigs,et al.  Solving non-bipartite matching problems via shortest path techniques , 1988 .

[12]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[13]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[14]  Hisham M. Haddad,et al.  Proceedings of the 1999 ACM Symposium on Applied Computing, SAC'99, San Antonio, Texas, USA, February 28 - March 2, 1999 , 1999, ACM Symposium on Applied Computing.

[15]  H. Schwefel,et al.  Approximating the Pareto Set: Concepts, Diversity Issues, and Performance Assessment , 1999 .

[16]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..

[17]  Colin E. Bell,et al.  Weighted matching with vertex weights: An application to scheduling training sessions in NASA space shuttle cockpit simulators , 1994 .

[18]  Zbigniew Michalewicz,et al.  Adaptation in evolutionary computation: a survey , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[19]  Mitsuo Gen,et al.  Genetic algorithms and engineering design , 1997 .

[20]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[21]  M. Pirlot General local search methods , 1996 .

[22]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[23]  Ralph E. Steuer Multiple criteria optimization , 1986 .

[24]  Ulrich Derigs,et al.  Solving (large scale) matching problems combinatorially , 1991, Math. Program..

[25]  Jeffrey Horn,et al.  Multicriterion decision making , 1997 .

[26]  Robert E. Tarjan,et al.  On a Greedy Heuristic for Complete Matching , 1981, SIAM J. Comput..

[27]  R. Burkard,et al.  Assignment and Matching Problems: Solution Methods with FORTRAN-Programs , 1980 .

[28]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[29]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[30]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[31]  Lashon B. Booker,et al.  Proceedings of the fourth international conference on Genetic algorithms , 1991 .

[32]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[33]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[34]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[35]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[36]  Mitsuo Gen,et al.  Genetic algorithm approach on multi-criteria minimum spanning tree problem , 1999, Eur. J. Oper. Res..

[37]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[38]  Silvio Micali,et al.  Priority queues with variable priority and an O(EV log V) algorithm for finding a maximal weighted matching in general graphs , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[39]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[40]  Thomas Bck,et al.  Self-adaptation in genetic algorithms , 1991 .

[41]  William J. Cook,et al.  Solving Large-Scale Matching Problems , 1991, Network Flows And Matching.

[42]  Michel Minoux,et al.  A new algorithm for general matching problems using network flow subproblems , 1989, Networks.

[43]  Ulrich Derigs,et al.  A matching-based approach for solving a delivery/pick-up vehicle routing problem with time constraints , 1992 .

[44]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[45]  Hajime Kita,et al.  Multi-objective optimization by genetic algorithms: a review , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[46]  Harold N. Gabow,et al.  Data structures for weighted matching and nearest common ancestors with linking , 1990, SODA '90.

[47]  William J. Cook,et al.  Computing Minimum-Weight Perfect Matchings , 1999, INFORMS J. Comput..

[48]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[49]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[50]  Robert E. Tarjan,et al.  Faster scaling algorithms for general graph matching problems , 1991, JACM.

[51]  W. Cunningham,et al.  A primal algorithm for optimum matching , 1978 .

[52]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[53]  Thomas Bäck,et al.  Parallel Problem Solving from Nature — PPSN V , 1998, Lecture Notes in Computer Science.

[54]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[55]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[56]  Stephanie Forrest,et al.  Proceedings of the 5th International Conference on Genetic Algorithms , 1993 .

[57]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithm test suites , 1999, SAC '99.

[58]  E. L. Ulungu,et al.  MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .