Design of a Composite Leaf Spring for Railway Vehicles

The paper deals with the design/optimization of a leaf spring for railway vehicles using composite materials. The optimization was carried out based on the main mechanical parameters of the current design solution for steel leaf springs. A numerical simulation was created to obtain the data, then the simulation was verified using an experimental test. Glass fibre reinforcement with epoxy resin was chosen as the material for the composite leaf spring. The main shape of the composite leaf spring was created using geometrical optimization. An advanced finite element model which modelled individual plies of the laminate was created to check the strength of the composite spring. A maximum stress strength criterion and transverse shear interlaminar criterion were used to evaluate the failure index.